论文标题
基于模拟游戏的学习通用属性的计算和数据要求
Computational and Data Requirements for Learning Generic Properties of Simulation-Based Games
论文作者
论文摘要
经验游戏理论分析(EGTA)主要集中于学习基于模拟的游戏的平衡。最近的方法通过学习了游戏实用程序的统一近似,然后应用Precision-Recall定理来解决这个问题:即,真实游戏的所有平衡都是估计的游戏中的近似平衡,反之亦然。在这项工作中,我们将这种方法推广到表现得很好的所有游戏属性(即Lipschitz在公用事业中的连续),包括遗憾(定义NASH和相关的均衡),对抗性价值观以及Power-Mean和Gini社会福利。此外,我们介绍了一种新颖的算法 - 与修剪(PSP)进行渐进的采样(PSP) - 用于学习统一的近似值,从而进行游戏的任何属性属性,一旦相应的玩家的实用程序得到充分估计,该策略概述了策略配置文件,并且我们将其数据和查询的复杂性分析,以优先级别的不知名的效率变量分析其数据和查询复杂性。我们对算法进行了广泛的实验,表明1)PSP节省的查询数量对效用方差分布高度敏感,而2)PSP始终超过理论上界限,比自然基础的查询复杂性明显低得多。我们最后进行了实验,尽管统计EGTA方法中的最新进展,包括此处开发的统计EGTA方法,但仍揭示了基于模拟游戏的学习属性的剩余困难。
Empirical game-theoretic analysis (EGTA) is primarily focused on learning the equilibria of simulation-based games. Recent approaches have tackled this problem by learning a uniform approximation of the game's utilities, and then applying precision-recall theorems: i.e., all equilibria of the true game are approximate equilibria in the estimated game, and vice-versa. In this work, we generalize this approach to all game properties that are well behaved (i.e., Lipschitz continuous in utilities), including regret (which defines Nash and correlated equilibria), adversarial values, and power-mean and Gini social welfare. Further, we introduce a novel algorithm -- progressive sampling with pruning (PSP) -- for learning a uniform approximation and thus any well-behaved property of a game, which prunes strategy profiles once the corresponding players' utilities are well-estimated, and we analyze its data and query complexities in terms of the a priori unknown utility variances. We experiment with our algorithm extensively, showing that 1) the number of queries that PSP saves is highly sensitive to the utility variance distribution, and 2) PSP consistently outperforms theoretical upper bounds, achieving significantly lower query complexities than natural baselines. We conclude with experiments that uncover some of the remaining difficulties with learning properties of simulation-based games, in spite of recent advances in statistical EGTA methodology, including those developed herein.