论文标题
双曲线分子表示学习用于药物重新定位
Hyperbolic Molecular Representation Learning for Drug Repositioning
论文作者
论文摘要
学习准确的药物表示对于诸如计算药物重新定位之类的任务至关重要。药物层次结构是一个有价值的来源,它编码在类似树状结构中药物之间关系的知识,在这种结构中,在同一器官上作用,治疗相同疾病或与同一生物学靶标结合的药物被分组在一起。但是,它在学习药物表示方面的效用尚未探索,目前描述的药物表示不能将新颖的分子放在药物层次结构中。在这里,我们开发了一种半监视的药物嵌入,其中包含两个信息来源:(1)从药物和类似药物样分子的化学结构(无监督)的化学结构中推断出的基本化学语法,以及(2)在专家制造的批准药物(监督药物)中编码的层次关系。我们使用变异自动编码器(VAE)框架来编码分子的化学结构,并使用从层次结构获得的药物 - 药物相似性信息来诱导在双曲线空间中的药物聚类。双曲线空间适合编码层次关系。我们的定性结果支持学习的药物嵌入可以诱导药物之间的分层关系。我们证明,学习的药物嵌入可用于药物重新定位。
Learning accurate drug representations is essential for task such as computational drug repositioning. A drug hierarchy is a valuable source that encodes knowledge of relations among drugs in a tree-like structure where drugs that act on the same organs, treat the same disease, or bind to the same biological target are grouped together. However, its utility in learning drug representations has not yet been explored, and currently described drug representations cannot place novel molecules in a drug hierarchy. Here, we develop a semi-supervised drug embedding that incorporates two sources of information: (1) underlying chemical grammar that is inferred from chemical structures of drugs and drug-like molecules (unsupervised), and (2) hierarchical relations that are encoded in an expert-crafted hierarchy of approved drugs (supervised). We use the Variational Auto-Encoder (VAE) framework to encode the chemical structures of molecules and use the drug-drug similarity information obtained from the hierarchy to induce the clustering of drugs in hyperbolic space. The hyperbolic space is amenable for encoding hierarchical relations. Our qualitative results support that the learned drug embedding can induce the hierarchical relations among drugs. We demonstrate that the learned drug embedding can be used for drug repositioning.