论文标题

在基塔夫链中传播复杂性和拓扑转换

Spread Complexity and Topological Transitions in the Kitaev Chain

论文作者

Caputa, Pawel, Gupta, Nitin, Haque, S. Shajidul, Liu, Sinong, Murugan, Jeff, Van Zyl, Hendrik J. R.

论文摘要

最近的许多作品认为,量子复杂性是最近在黑洞物理学的情况下重新出现的计算机科学中众所周知的概念,可以用作对新现象的有效探针,例如量子混乱,甚至是量子相变。在本文中,我们使用一维P波超导体(Kitaev链)为后者提供了进一步的支持,作为显示拓扑相变的系统的原型。基塔夫链的哈密顿量与费米昂奇偶对称性相对的两个物质阶段。一个琐碎的强耦合相和拓扑非平底的,弱耦合的相,与majorana零模型。我们表明,Krylov复杂性(或更确切地说,相关的扩散复杂性)能够区分两者,并提供了将它们分开的量子临界点的诊断。我们还对现有文献中一些可能的歧义发表了关于不同复杂性对拓扑相变的敏感性的敏感性。

A number of recent works have argued that quantum complexity, a well-known concept in computer science that has re-emerged recently in the context of the physics of black holes, may be used as an efficient probe of novel phenomena such as quantum chaos and even quantum phase transitions. In this article, we provide further support for the latter, using a 1-dimensional p-wave superconductor - the Kitaev chain - as a prototype of a system displaying a topological phase transition. The Hamiltonian of the Kitaev chain manifests two gapped phases of matter with fermion parity symmetry; a trivial strongly-coupled phase and a topologically non-trivial, weakly-coupled phase with Majorana zero-modes. We show that Krylov-complexity (or, more precisely, the associated spread-complexity) is able to distinguish between the two and provides a diagnostic of the quantum critical point that separates them. We also comment on some possible ambiguity in the existing literature on the sensitivity of different measures of complexity to topological phase transitions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源