论文标题
Fock空间上的规范整体操作员
Canonical integral operators on the Fock space
论文作者
论文摘要
在本文中,我们介绍并研究了Fock Space $ f^2(c)$的两者组成运营商家族。我们确切地确定这些操作员何时有界限以及何时统一。我们表明,在Bargmann转换下,这些操作员将经典的线性规范变换包括为特殊情况。作为一个应用程序,我们为Fock空间中的特殊线性组$ sl(2,r)$获得了新的统一射击表示。
In this paper we introduce and study a two-parameter family of integral operators on the Fock space $F^2(C)$. We determine exactly when these operators are bounded and when they are unitary. We show that, under the Bargmann transform, these operators include the classical linear canonical transforms as special cases. As an application, we obtain a new unitary projective representation for the special linear group $SL(2,R)$ on the Fock space.