论文标题
学术:用于归纳和解释性文本分析的人类图形合作
Scholastic: Graphical Human-Al Collaboration for Inductive and Interpretive Text Analysis
论文作者
论文摘要
解释性学者通过手动采样文档,应用代码以及将代码精炼和整理为类别,直到出现有意义的主题,从而从文本语料库中产生知识。鉴于大量的语料库,机器学习可以帮助扩展此数据采样和分析,但是先前的研究表明,专家通常关注算法可能破坏或推动解释性奖学金。我们采用以人为本的设计方法来解决围绕机器辅助解释性研究的关注,以构建Scholastic,该研究将机器中的集群算法纳入了脚手架解释性文本分析。随着学者将代码应用于文档和完善它们,由此产生的编码模式用作结构化的元数据,该元数据限制了从语料库推断出的层次文档和单词簇。这些集群的交互式可视化可以帮助学者们战略性地对文档进行进一步的洞察力进行洞察力。学术表明,采用熟悉隐喻的以人为中心的算法设计和可视化如何通过交互式主题建模和文档聚类来支持归纳和解释性研究方法。
Interpretive scholars generate knowledge from text corpora by manually sampling documents, applying codes, and refining and collating codes into categories until meaningful themes emerge. Given a large corpus, machine learning could help scale this data sampling and analysis, but prior research shows that experts are generally concerned about algorithms potentially disrupting or driving interpretive scholarship. We take a human-centered design approach to addressing concerns around machine-assisted interpretive research to build Scholastic, which incorporates a machine-in-the-loop clustering algorithm to scaffold interpretive text analysis. As a scholar applies codes to documents and refines them, the resulting coding schema serves as structured metadata which constrains hierarchical document and word clusters inferred from the corpus. Interactive visualizations of these clusters can help scholars strategically sample documents further toward insights. Scholastic demonstrates how human-centered algorithm design and visualizations employing familiar metaphors can support inductive and interpretive research methodologies through interactive topic modeling and document clustering.