论文标题

连接的Turán树木数量

Connected Turán number of trees

论文作者

Caro, Yair, Patkós, Balázs, Tuza, Zsolt

论文摘要

作为研究众多的Turán号码的变体,$ ex(n,f)$,可能包含$ n $ n $ vertex $ f $ - f $ f $ f $ f $ f $ f $ f $ f $ f $ f $ f $ f $ ex_c(n,f)$的最大边缘,最多的边缘,是$ n $ n $ n $ n $ - vertex connected $ f $ f $ f $ f $ f的图形。我们专注于禁止图是树的情况。著名的Erdős和Sós的猜想指出,对于任何树$ t $,我们都有$ ex(n,t)\ le(| t | -2)\ frac {n} {2} $。我们解决了问题,$ ex_c(n,t)$可以是多少,$ ex_c(n,t)$和$(| t | -2)\ frac {n} {2} $的最小可能比率是$ | t | $ grow。我们还确定了小树的$ ex_c(n,t)$的确切值,特别是所有最多六个顶点的树。我们介绍了基于图形参数的连接$ t $ free图的一般构造,最长的路径,匹配号码,分支号码等。

As a variant of the much studied Turán number, $ex(n,F)$, the largest number of edges that an $n$-vertex $F$-free graph may contain, we introduce the connected Turán number $ex_c(n,F)$, the largest number of edges that an $n$-vertex connected $F$-free graph may contain. We focus on the case where the forbidden graph is a tree. The celebrated conjecture of Erdős and Sós states that for any tree $T$, we have $ex(n,T)\le(|T|-2)\frac{n}{2}$. We address the problem how much smaller $ex_c(n,T)$ can be, what is the smallest possible ratio of $ex_c(n,T)$ and $(|T|-2)\frac{n}{2}$ as $|T|$ grows. We also determine the exact value of $ex_c(n,T)$ for small trees, in particular for all trees with at most six vertices. We introduce general constructions of connected $T$-free graphs based on graph parameters as longest path, matching number, branching number, etc.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源