论文标题

二阶二阶准确数值方法,用于在能量变化公式中使用Poisson-Nernst-Nernst-planck系统

A second order accurate numerical method for the Poisson-Nernst-Planck system in the energetic variational formulation

论文作者

Liu, Chun, Wang, Cheng, Wise, Steven M., Yue, Xingye, Zhou, Shenggao

论文摘要

提出了第二阶准确(及时)的数值方案,并分析了Poisson-Nernst-Nernst-Planck方程(PNP)系统,该系统在Energetic差异方法(ENVARA)中重新构成为非恒定迁移率$ h^{ - 1} $梯度流。中心有限差为空间离散化。同时,对数能量电位的高度非线性和奇异性质一直是设计二阶准确方案的必要困难,同时保留了变分的能量结构。为了独特的解决性,使用二阶精确外推公式更新了移动性函数。修改后的曲柄 - 尼科尔森方案用于近似对数项,因此其内部产物具有离散的时间衍生物,可以准确地提供相应的非线性能量差。此后,确保对数部分的能量稳定性。此外,在数值方案中添加了非线性人工正则化项,因此可以在与对数函数相关的奇异性的帮助下在理论上证明具有阳性性的性质。此外,本文还提供了最佳速率收敛分析,其中数值解决方案的高阶渐近扩展,必须包括粗略的误差估算和精制误差估算技术来完成此类分析。这项工作结合了PNP系统二阶精确数值方案的以下理论属性:(i)时间和空间的二阶准确度,(ii)唯一的溶解度和阳性,(iii)能量稳定性以及(iv)最佳速率收敛性。还提出了一些数值结果。

A second order accurate (in time) numerical scheme is proposed and analyzed for the Poisson-Nernst-Planck equation (PNP) system, reformulated as a non-constant mobility $H^{-1}$ gradient flow in the Energetic Variational Approach (EnVarA). The centered finite difference is taken as the spatial discretization. Meanwhile, the highly nonlinear and singular nature of the logarithmic energy potentials has always been the essential difficulty to design a second order accurate scheme in time, while preserving the variational energetic structures. The mobility function is updated with a second order accurate extrapolation formula, for the sake of unique solvability. A modified Crank-Nicolson scheme is used to approximate the logarithmic term, so that its inner product with the discrete temporal derivative exactly gives the corresponding nonlinear energy difference; henceforth the energy stability is ensured for the logarithmic part. In addition, nonlinear artificial regularization terms are added in the numerical scheme, so that the positivity-preserving property could be theoretically proved, with the help of the singularity associated with the logarithmic function. Furthermore, an optimal rate convergence analysis is provided in this paper, in which the higher order asymptotic expansion for the numerical solution, the rough error estimate and refined error estimate techniques have to be included to accomplish such an analysis. This work combines the following theoretical properties for a second order accurate numerical scheme for the PNP system: (i) second order accuracy in both time and space, (ii) unique solvability and positivity, (iii) energy stability, and (iv) optimal rate convergence. A few numerical results are also presented.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源