论文标题

比较基线莎普利和集成梯度以进行本地解释:一些其他见解

Comparing Baseline Shapley and Integrated Gradients for Local Explanation: Some Additional Insights

论文作者

Feng, Tianshu, Zhou, Zhipu, Tarun, Joshi, Nair, Vijayan N.

论文摘要

文献中有许多不同的方法来解释机器学习结果。但是,这些方法的方法有所不同,通常没有提供相同的解释。在本文中,我们考虑了两种最新方法:集成梯度(Sundararajan,Taly和Yan,2017年)和基线Shapley(Sundararajan和Najmi,2020年)。原始作者已经研究了两种方法的公理属性,并提供了一些比较。我们的工作为表格数据提供了一些有关其比较行为的其他见解。我们讨论两者提供相同解释及其不同的常见情况。我们还使用仿真研究来检查具有Relu激活函数的神经网络拟合模型时的差异。

There are many different methods in the literature for local explanation of machine learning results. However, the methods differ in their approaches and often do not provide same explanations. In this paper, we consider two recent methods: Integrated Gradients (Sundararajan, Taly, & Yan, 2017) and Baseline Shapley (Sundararajan and Najmi, 2020). The original authors have already studied the axiomatic properties of the two methods and provided some comparisons. Our work provides some additional insights on their comparative behavior for tabular data. We discuss common situations where the two provide identical explanations and where they differ. We also use simulation studies to examine the differences when neural networks with ReLU activation function is used to fit the models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源