论文标题

在零距离图上,环$ \ mathbb {f} _p+u \ mathbb {f} _p+u^2 \ mathbb {f} _p $

On Zero-Divisor Graph of the ring $\mathbb{F}_p+u\mathbb{F}_p+u^2 \mathbb{F}_p$

论文作者

Annamalai, N.

论文摘要

在本文中,我们讨论了具有身份$ \ mathbb {f} _p+u \ u \ mathbb {f} _p+u^2 \ mathbb {f} _p $ u^3 = 0 $ p $的零分数图。我们发现与环相关的零径向图的集团数,色数,顶点连接,边缘连接性,直径和周长。我们找到了一些拓扑指数和代码的主要参数,这些代码是从零分离器图$γ(r)的发射矩阵得出的。$另外,我们发现邻接和laplacian矩阵的特征值,能量和频谱半径$γ(r)。$ $。

In this article, we discussed the zero-divisor graph of a commutative ring with identity $\mathbb{F}_p+u\mathbb{F}_p+u^2 \mathbb{F}_p$ where $u^3=0$ and $p$ is an odd prime. We find the clique number, chromatic number, vertex connectivity, edge connectivity, diameter and girth of a zero-divisor graph associated with the ring. We find some of topological indices and the main parameters of the code derived from the incidence matrix of the zero-divisor graph $Γ(R).$ Also, we find the eigenvalues, energy and spectral radius of both adjacency and Laplacian matrices of $Γ(R).$

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源