论文标题

振幅,Hopf代数和颜色 - 基因二重性

Amplitudes, Hopf algebras and the colour-kinematics duality

论文作者

Brandhuber, Andreas, Brown, Graham R., Chen, Gang, Gowdy, Joshua, Travaglini, Gabriele, Wen, Congkao

论文摘要

最近有人提出,在颜色界面二重性中具有重大质量有效田间理论(HEFT)和Yang-mills理论的颜色二元性二元性的运动代数是准烟草hopf代数。相关的融合产物确定了伯尔尼 - 卡拉斯科 - 约翰逊(BCJ)分子的结构,这些分子显然是规格不变的,并且具有与重粒子交换相对应的极。在这项工作中,我们探讨了准剃管代数与散射幅度的一般物理特性之间的深入联系。首先,在证明了重力重量振幅的双层拷贝形式之后,我们表明运动代数的相关物与大型杆上的BCJ分子分解相对应。然后,我们研究了标准的准避难所Hopf代数的扩展,以描述具有所有可能的Gluon排序的BCJ分子。这是通过将原始代数用特定的Hopf代数张开来实现的。在此扩展版本中,订购代数中相关的特定选择会导致所得的HOPF代数中的一个反模具,该反de是在每个BCJ分子中逆转Gluons的订单的解释。

It was recently proposed that the kinematic algebra featuring in the colour-kinematics duality for scattering amplitudes in heavy-mass effective field theory (HEFT) and Yang-Mills theory is a quasi-shuffle Hopf algebra. The associated fusion product determines the structure of the Bern-Carrasco-Johansson (BCJ) numerators, which are manifestly gauge invariant and with poles corresponding to heavy-particle exchange. In this work we explore the deep connections between the quasi-shuffle algebra and general physical properties of the scattering amplitudes. First, after proving the double-copy form for gravitational HEFT amplitudes, we show that the coproducts of the kinematic algebra are in correspondence with factorisations of BCJ numerators on massive poles. We then study an extension of the standard quasi-shuffle Hopf algebra to a non-abelian version describing BCJ numerators with all possible gluon orderings. This is achieved by tensoring the original algebra with a particular Hopf algebra of orderings. In this extended version, a specific choice of the coproduct in the algebra of orderings leads to an antipode in the resulting Hopf algebra that has the interpretation of reversing the gluons' order within each BCJ numerator.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源