论文标题

NEO-QEC:神经网络增强了表面代码的在线超导解码器

NEO-QEC: Neural Network Enhanced Online Superconducting Decoder for Surface Codes

论文作者

Ueno, Yosuke, Kondo, Masaaki, Tanaka, Masamitsu, Suzuki, Yasunari, Tabuchi, Yutaka

论文摘要

量子误差校正(QEC)对于减轻误差对量子的影响至关重要,而表面代码(SC)是最有希望的QEC方法之一。解码SC是量子计算机(QC)控制设备中最昂贵的任务,许多作品专注于精确的SC的解码算法,包括具有神经网络(NNS)的算法。实用的QC还需要低延迟解码,因为缓慢的解码会导致Qubits上的错误积累,从而导致逻辑故障。对于具有超导码头的QC,除了具有高精度和低潜伏期外,实用的解码器还必须非常有效。为了降低质量控制的硬件复杂性,我们应该在功率预算有限的低温环境中解码SC,而超导量子器则运行。 在本文中,我们提出了一个基于NN的精确,快速和低功率解码器,能够解码SC和晶格手术(LS)操作,并在辅助量子器上进行测量误差。为了达到SC解码器的准确性和硬件效率,我们采用了二进制的NN。我们为使用基于SFQ的数字电路的解码器设计了一个神经处理单元(NPU),并通过香料级模拟对其进行评估。我们通过量子误差模拟器来评估解码器性能,以用于单个逻辑量子标论保护和最低代码距离的最小操作,分别达到2.5%和1.0%的精度阈值。

Quantum error correction (QEC) is essential for quantum computing to mitigate the effect of errors on qubits, and surface code (SC) is one of the most promising QEC methods. Decoding SCs is the most computational expensive task in the control device of quantum computers (QCs), and many works focus on accurate decoding algorithms for SCs, including ones with neural networks (NNs). Practical QCs also require low-latency decoding because slow decoding leads to the accumulation of errors on qubits, resulting in logical failures. For QCs with superconducting qubits, a practical decoder must be very power-efficient in addition to having high accuracy and low latency. In order to reduce the hardware complexity of QC, we are supposed to decode SCs in a cryogenic environment with a limited power budget, where superconducting qubits operate. In this paper, we propose an NN-based accurate, fast, and low-power decoder capable of decoding SCs and lattice surgery (LS) operations with measurement errors on ancillary qubits. To achieve both accuracy and hardware efficiency of the SC decoder, we apply a binarized NN. We design a neural processing unit (NPU) for the decoder with SFQ-based digital circuits and evaluate it with a SPICE-level simulation. We evaluate the decoder performance by a quantum error simulator for the single logical qubit protection and the minimum operation of LS with code distances up to 13, and it achieves 2.5% and 1.0% accuracy thresholds, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源