论文标题

$ a $ a $ hecke代数II的Schurian Finitity

Schurian-finiteness of blocks of type $A$ Hecke algebras II

论文作者

Lyle, Sinéad, Speyer, Liron

论文摘要

对于任何代数$ a $,代数封闭的字段$ \ mathbb {f} $,我们说如果$ a $ a-module $ m $是schurian,则如果$ \ mathrm {end} _a(m)_a(m)\ cong \ cong \ mathbb {f} $。我们说$ a $是Schurian-Finite,如果只有许多同构的schurian $ a $ modules和Schurian-Infinite的同构类别。在本文中,我们建立在Ariki的工作和第二位作者的基础上,以表明所有类型的$ a $ a $ hecke重量代数至少$ 2 $ $ 2 $的量子特征$ e \ geq 3 $ is schurian-infinite。这证明,如果$ e \ e \ geq 3 $,则$ a $ a $ hecke代数的块是schurian-finite,并且仅当它们为代表时。

For any algebra $A$ over an algebraically closed field $\mathbb{F}$, we say that an $A$-module $M$ is Schurian if $\mathrm{End}_A(M) \cong \mathbb{F}$. We say that $A$ is Schurian-finite if there are only finitely many isomorphism classes of Schurian $A$-modules, and Schurian-infinite otherwise. In this paper, we build on the work of Ariki and the second author to show that all blocks of type $A$ Hecke algebras of weight at least $2$ in quantum characteristic $e \geq 3$ are Schurian-infinite. This proves that if $e \geq 3$ then blocks of type $A$ Hecke algebras are Schurian-finite if and only if they are representation-finite.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源