论文标题

$ n $ - 组件耦合的非线性schrödinger方程的精确分析孤子解决方案具有任意非线性参数

Exact analytical soliton solutions of $N$-component coupled nonlinear Schrödinger equations with arbitrary nonlinear parameters

论文作者

Mao, N., Zhao, L. -C.

论文摘要

精确的分析孤子解决方案在孤子场中起重要作用。在非线性耦合系统中对非线性参数有一些特殊的限制,获得了孤子溶液,但它们通常不在实际物理系统中。我们成功地将所有常规约束条件发布在非线性参数上,以$ n $ - 组件耦合的非线性schrödinger方程中的精确分析矢量soliton解决方案。确切的孤子解决方案及其存在条件明确给出。这些结果的应用将在几个当前的实验参数制度中讨论。结果将激发实验,以观察到非线性光纤,玻色 - 因施泰因冷凝物和其他非线性偶联系统中更多新颖的载体孤子。

Exact analytical soliton solutions play an important role in soliton fields. Soliton solutions were obtained with some special constraints on the nonlinear parameters in nonlinear coupled systems, but they usually do not holds in real physical systems. We successfully release all usual constrain conditions on nonlinear parameters for exact analytical vector soliton solutions in $N$-component coupled nonlinear Schrödinger equations. The exact soliton solutions and their existence condition are given explicitly. Applications of these results are discussed in several present experimental parameters regimes. The results would motivate experiments to observe more novel vector solitons in nonlinear optical fibers, Bose-Einstein condensates, and other nonlinear coupled systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源