论文标题

一元模块和半戈伦斯坦 - 训练模块

Monic modules and semi-Gorenstein-projective modules

论文作者

Zhang, Pu

论文摘要

Gorenstein-progentive模块的类别$ {\ rm gp}(λ)$ tensor代数$λ= a \ otimes_kb $可以描述为单态类别$ {\ rm mon}(\ rm mon}(b,b,b,{\ rm gp}(\ rm gp}(a)(a)$ bp $ bp $ bp $ bp $ +特别是,Gorenstein-Prokentive $λ$ - 模型是Monic。在本文中,我们发现了半戈伦斯坦式$λ$ - 模块和$ a $模块之间的类似关系,即通过monic模块,即$ {\ rm mon}(b,\ ^\ perp a)= {\ rm mon}(b,a)戈伦斯坦(Gorenstein),然后$λ$是较弱的戈伦斯坦(Gorenstein),而每个半戈伦斯坦(Gorenstein)则是monic;而且,如果有限的无环颤抖的$ b = kq $带有$ q $,则$λ$在且仅当$ a $是弱的戈伦斯坦时,$λ$是弱的。但是,这种关系本身并没有回答是否存在非元人的双重半指注射$λ$模型。使用最近发现的双重半哥伦斯坦 - 标准$ $ a $模型的例子,我们通过明确构建一类双重半指注射$ t_2(a)$ - 模块,以一种参数,使它们不是一个莫尼克,并且不是monic and corsion and corsion noce torsion and tosion。对于Bimodules给出的三角形基质代数上的一元模块和半戈伦斯坦训练模块,也获得了相应的结果。

The category ${\rm gp}(Λ)$ of Gorenstein-projective modules over tensor algebra $Λ= A\otimes_kB$ can be described as the monomorphism category ${\rm mon}(B, {\rm gp}(A))$ of $B$ over ${\rm gp}(A)$. In particular, Gorenstein-projective $Λ$-modules are monic. In this paper, we find the similar relation between semi-Gorenstein-projective $Λ$-modules and $A$-modules, via monic modules, namely, ${\rm mon}(B, \ ^\perp A) = {\rm mon}(B, A)\cap \ ^\perp Λ.$ Using this, it is proved that if $A$ is weakly Gorenstein, then $Λ$ is weakly Gorenstein if and only each semi-Gorenstein-projective $Λ$-modules are monic; and that if $B = kQ$ with $Q$ a finite acyclic quiver, then $Λ$ is weakly Gorenstein if and only if $A$ is weakly Gorenstein. However, this relation itself does not answer the question whether there exist double semi-Gorenstein-projective $Λ$-modules which are not monic. Using the recent discovered examples of double semi-Gorenstein-projective $A$-modules which are not torsionless, we positively answer this question, by explicitly constructing a class of double semi-Gorenstein-projective $T_2(A)$-modules with one parameter such that they are not monic, and hence not torsionless. The corresponding results are obtained also for the monic modules and semi-Gorenstein-projective modules over the triangular matrix algebras given by bimodules.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源