论文标题
通过辍学的自我知识蒸馏
Self-Knowledge Distillation via Dropout
论文作者
论文摘要
为了提高性能,深度神经网络需要更深或更广泛的网络结构,以涉及大量的计算和内存成本。为了减轻这个问题,自我知识蒸馏方法通过提炼模型本身的内部知识来规范模型。常规的自我知识蒸馏方法需要其他可训练的参数或取决于数据。在本文中,我们建议使用辍学(SD-Dropout)提出一种简单有效的自我知识蒸馏方法。 SD-Dropout通过辍学采样来提炼多个模型的后验分布。我们的方法不需要任何其他可训练的模块,不依赖数据,只需要简单的操作。此外,这种简单的方法可以很容易地与各种自我知识蒸馏方法结合在一起。我们提供了对远期和反向KL-Diverence在工作中的影响的理论和实验分析。对各种视觉任务(即图像分类,对象检测和分布移动)进行的广泛实验表明,所提出的方法可以有效地改善单个网络的概括。进一步的实验表明,所提出的方法还提高了校准性能,对抗性鲁棒性和分布外检测能力。
To boost the performance, deep neural networks require deeper or wider network structures that involve massive computational and memory costs. To alleviate this issue, the self-knowledge distillation method regularizes the model by distilling the internal knowledge of the model itself. Conventional self-knowledge distillation methods require additional trainable parameters or are dependent on the data. In this paper, we propose a simple and effective self-knowledge distillation method using a dropout (SD-Dropout). SD-Dropout distills the posterior distributions of multiple models through a dropout sampling. Our method does not require any additional trainable modules, does not rely on data, and requires only simple operations. Furthermore, this simple method can be easily combined with various self-knowledge distillation approaches. We provide a theoretical and experimental analysis of the effect of forward and reverse KL-divergences in our work. Extensive experiments on various vision tasks, i.e., image classification, object detection, and distribution shift, demonstrate that the proposed method can effectively improve the generalization of a single network. Further experiments show that the proposed method also improves calibration performance, adversarial robustness, and out-of-distribution detection ability.