论文标题

紧密限制氯锂光子集成电路和激光器

Tightly confining lithium niobate photonic integrated circuits and lasers

论文作者

Li, Zihan, Wang, Rui Ning, Lihachev, Grigorii, Tan, Zelin, Snigirev, Viacheslav, Churaev, Mikhail, Kuznetsov, Nikolai, Siddharth, Anat, Bereyhi, Mohammad J., Riemensberger, Johann, Kippenberg, Tobias J.

论文摘要

光子集成电路对于现代数据中心内的数据传输是必不可少的,并且传统上遍布多个应用程序球,从而限制了散装光学元件,例如激光雷达和生物传感。特别令人感兴趣的是铁电体,例如尼贝特锂,它们表现出较大的电气效应效应,可实现超快和有效的调节,但难以通过干蚀刻进行处理。因此,不可能蚀刻紧密限制的波导 - 通常在硅或氮化硅中实现 - 是不可能的。在1950年代发现了钻石样碳(DLC),是一种表现出无定形相,出色硬度的材料,并且能够沉积在纳米金属薄膜中。它具有出色的热,机械和电气性能,使其成为理想的保护涂层。在这里,我们证明了DLC也是基于铁电的下一代光子整合电路制造的优越材料,特别是绝缘子(LNOI)上的尼贝特锂。使用DLC作为硬面膜,我们证明了深层蚀刻,紧密限制的低损耗光子积分电路的制造,损失低至5.6 db/m。与广泛使用的山脊波导相反,这种方法受益于高度高的区域集成密度,同时保持有效的电流调制,低损耗,并为有效的光纤接口提供途径。作为概念的证明,我们证明了频率敏捷杂交综合III-V基于niobate的激光器,具有KHz线宽,调谐速率为0.7 PETA-HERTZ每秒,具有出色的线性和与CMOS兼容的驱动电压。我们的方法可以预示新一代紧密限制铁电光子整合电路。

Photonic integrated circuits are indispensible for data transmission within modern datacenters and pervade into multiple application spheres traditionally limited for bulk optics, such as LiDAR and biosensing. Of particular interest are ferroelectrics such as Lithium Niobate, which exhibit a large electro-optical Pockels effect enabling ultrafast and efficient modulation, but are difficult to process via dry etching . For this reason, etching tightly confining waveguides - routinely achieved in silicon or silicon nitride - has not been possible. Diamond-like carbon (DLC) was discovered in the 1950s and is a material that exhibits an amorphous phase, excellent hardness, and the ability to be deposited in nano-metric thin films. It has excellent thermal, mechanical, and electrical properties, making it an ideal protective coating. Here we demonstrate that DLC is also a superior material for the manufacturing of next-generation photonic integrated circuits based on ferroelectrics, specifically Lithium Niobate on insulator (LNOI). Using DLC as a hard mask, we demonstrate the fabrication of deeply etched, tightly confining, low loss photonic integrated circuits with losses as low as 5.6 dB/m. In contrast to widely employed ridge waveguides, this approach benefits from a more than 1 order of magnitude higher area integration density while maintaining efficient electro-optical modulation, low loss, and offering a route for efficient optical fiber interfaces. As a proof of concept, we demonstrate a frequency agile hybrid integrated III-V Lithium Niobate based laser with kHz linewidth and tuning rate of 0.7 Peta-Hertz per second with excellent linearity and CMOS-compatible driving voltage. Our approach can herald a new generation of tightly confining ferroelectric photonic integrated circuits.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源