论文标题
利用单位随机设计下的低订单相互作用的邻里干扰
Exploiting Neighborhood Interference with Low Order Interactions under Unit Randomized Design
论文作者
论文摘要
在现实世界中,个人的结果受到社交网络中人们的治疗分配的影响,网络干扰在现实环境中普遍存在。但是,这对估计因果影响构成了挑战。我们考虑估计总治疗效果(TTE)的任务,或者当每个人接受治疗而不是任何人时,在网络干扰下,每个人都接受治疗而不是人时的平均结果之间的差异。在Bernoulli随机设计下,当将网络干扰效应限制为个人邻居之间的低阶相互作用时,我们为TTE提供了无偏估计器。除了有界度以外,我们没有在图表上做出任何假设,从而允许连接良好的网络,这些网络可能不容易聚集。我们得出了估计器的方差的结合,并在模拟实验中显示了与TTE的标准估计器相比,其性能很好。我们还在估计器的平均平方误差上得出了最小值下限,这表明估计的难度可以由潜在结果模型中的相互作用程度来表征。我们还证明,在网络程度和潜在结果模型的界限条件下,我们的估计器在渐近条件下是渐近正常的。我们的贡献的核心是平衡模型灵活性和统计复杂性的新框架,这是由这种低阶交互结构所捕获的。
Network interference, where the outcome of an individual is affected by the treatment assignment of those in their social network, is pervasive in real-world settings. However, it poses a challenge to estimating causal effects. We consider the task of estimating the total treatment effect (TTE), or the difference between the average outcomes of the population when everyone is treated versus when no one is, under network interference. Under a Bernoulli randomized design, we provide an unbiased estimator for the TTE when network interference effects are constrained to low order interactions among neighbors of an individual. We make no assumptions on the graph other than bounded degree, allowing for well-connected networks that may not be easily clustered. We derive a bound on the variance of our estimator and show in simulated experiments that it performs well compared with standard estimators for the TTE. We also derive a minimax lower bound on the mean squared error of our estimator which suggests that the difficulty of estimation can be characterized by the degree of interactions in the potential outcomes model. We also prove that our estimator is asymptotically normal under boundedness conditions on the network degree and potential outcomes model. Central to our contribution is a new framework for balancing model flexibility and statistical complexity as captured by this low order interactions structure.