论文标题
从3D扫描的牙齿拱门对牙齿的半监督分割
Semi-supervised segmentation of tooth from 3D Scanned Dental Arches
论文作者
论文摘要
牙齿分割是牙科修复体中的一个重要主题,这对于牙冠的产生,诊断和治疗计划至关重要。在牙科字段中,输入数据的可变性很高,没有公开可用的3D牙科拱门数据集。尽管最近对3D数据的深度学习体系结构提供的领域有所改善,但仍然存在一些问题,例如正确识别拱门中缺失的牙齿。我们建议将光谱聚类用作自我讨论的信号,以将3D拱门分割的联合训练神经网络进行分割。我们的方法是通过观察到的,即K-均值聚类提供了捕获与人类感知相关的保证线的线索。主要思想是通过将未标记的3D拱门分解为仅依赖几何信息的细分市场来自动生成训练数据。然后,使用关节损失对网络进行训练,该联合损失结合了注释输入的监督损失和无标签输入的自制损失。我们收集的数据有多种拱门,包括牙齿缺失的拱门。我们的实验结果表明,在使用半监督学习时,对完全监督的最先进的meshsegnet进行了改善。最后,我们贡献代码和数据集。
Teeth segmentation is an important topic in dental restorations that is essential for crown generation, diagnosis, and treatment planning. In the dental field, the variability of input data is high and there are no publicly available 3D dental arch datasets. Although there has been improvement in the field provided by recent deep learning architectures on 3D data, there still exists some problems such as properly identifying missing teeth in an arch. We propose to use spectral clustering as a self-supervisory signal to joint-train neural networks for segmentation of 3D arches. Our approach is motivated by the observation that K-means clustering provides cues to capture margin lines related to human perception. The main idea is to automatically generate training data by decomposing unlabeled 3D arches into segments relying solely on geometric information. The network is then trained using a joint loss that combines a supervised loss of annotated input and a self-supervised loss of non-labeled input. Our collected data has a variety of arches including arches with missing teeth. Our experimental results show improvement over the fully supervised state-of-the-art MeshSegNet when using semi-supervised learning. Finally, we contribute code and a dataset.