论文标题

4D实时掌握MRI在次秒时间分辨率下

4D Real-Time GRASP MRI at Sub-Second Temporal Resolution

论文作者

Feng, Li

论文摘要

如果可以实现高时间分辨率,则可以减少框架内运动,作为自由呼吸动态MRI的主要挑战。为了应对这一挑战,这项工作提出了一个高度加速的4D(3D+时间)实时MRI框架,并结合了标准的标准星级式标准型radial采样和量身定制的grasp-Pro(金角径向稀疏平行)的时间分辨率。具体而言,不连续进行4D实时MRI获取,而无需运动门控或排序。组织了堆栈的径向数据中的K空间中心,以指导时间基础的估计,使用Grasp-Pro重建来强制执行关节低率子空间和稀疏性约束。这种新的基础估计策略是在这项工作中为基于子空间的重建而提出的新功能,以实现高时间分辨率(例如,次数/3D卷)。它不需要序列修改即可获取其他导航数据,而是与市售的堆栈明星序列兼容,并且不需要中间重建步骤。提出的4D实时MRI方法在腹部运动幻影,自由呼吸的腹部MRI和动态对比增强的MRI(DCE-MRI)中进行了测试。通过在不到一秒钟内获取每个3D图像的能力,可以用我们的方法内在地降低框架内呼吸模糊,这也消除了运动检测和运动补偿的需求。

Intra-frame motion blurring, as a major challenge in free-breathing dynamic MRI, can be reduced if high temporal resolution can be achieved. To address this challenge, this work proposes a highly-accelerated 4D (3D+time) real-time MRI framework with sub-second temporal resolution combining standard stack-of-stars golden-angle radial sampling and tailored GRASP-Pro (Golden-angle RAdial Sparse Parallel) reconstruction. Specifically, 4D real-time MRI acquisition is performed continuously without motion gating or sorting. The k-space centers in stack-of-stars radial data are organized to guide estimation of a temporal basis, with which GRASP-Pro reconstruction is employed to enforce joint low-rank subspace and sparsity constraints. This new basis estimation strategy is the new feature proposed for subspace-based reconstruction in this work to achieve high temporal resolution (e.g., sub-second/3D volume). It does not require sequence modification to acquire additional navigation data, is compatible with commercially available stack-of-stars sequences, and does not need an intermediate reconstruction step. The proposed 4D real-time MRI approach was tested in abdominal motion phantom, free-breathing abdominal MRI, and dynamic contrast-enhanced MRI (DCE-MRI). With the ability to acquire each 3D image in less than one second, intra-frame respiratory blurring can be intrinsically reduced for body applications with our approach, which also eliminates the need for motion detection and motion compensation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源