论文标题

随机gf(q) - 代表性的矩形不是(b,c) - 可拆卸

Random GF(q)-representable matroids are not (b,c)-decomposable

论文作者

van der Pol, Jorn

论文摘要

We show that a random subset of the rank-$n$ projective geometry $\text{PG}(n-1,q)$ is, with high probability, not $(b,c)$-decomposable: if $k$ is its colouring number, it does not admit a partition of its ground set into classes of size at most $ck$, every transversal of which is $b$-colourable.这是Abdolazimi,Karlin,Klein和Oveis Gharan(Arxiv:2111.12436)的最新结果以及Leichter,Moseley和Pruhs(Arxiv:2206.12896)的结果,他们显示了$ \ text {pg}(pg}(n-1,q)不是$(n-1,q)$($(1)$(1,c)。而不是$(b,c)$ - 可分解。

We show that a random subset of the rank-$n$ projective geometry $\text{PG}(n-1,q)$ is, with high probability, not $(b,c)$-decomposable: if $k$ is its colouring number, it does not admit a partition of its ground set into classes of size at most $ck$, every transversal of which is $b$-colourable. This generalises recent results by Abdolazimi, Karlin, Klein, and Oveis Gharan (arXiv:2111.12436) and by Leichter, Moseley, and Pruhs (arXiv:2206.12896), who showed that $\text{PG}(n-1,q)$ is not $(1,c)$-decomposable, resp. not $(b,c)$-decomposable.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源