论文标题
$β\ sim 1 $ tokamak equilibria的微稳定性
Microstability of $β\sim 1$ tokamak equilibria
论文作者
论文摘要
高功率密度Tokamaks为设计具有成本效益的融合设备提供了潜在的解决方案。实现高功率密度的一种方法是以高$β$值(热压力与磁压的比率),即$β\ sim 1 $。但是,$β\ sim 1 $状态可能对各种压力和电流驱动的不稳定性不稳定或具有不利的微稳定性。为了探索这些可能性,我们产生$β\ sim 1 $ equilibria并研究其稳定性。最初,我们研究了过去用于生成$β\ sim 1 $ equilibria并概述其局限性的分析技术。因此,我们证明了使用计算机代码$ \ texttt {vmec} $的高$β$ equilibria的产生。然后,我们分析这些平衡,以确定它们针对无限$ n $理想气球模式的稳定性。我们通过进行详细的微稳定性研究,从评估静电ITG和TEM不稳定性开始。我们观察到高$β$平衡的有趣行为 - 通过两种不同的机制稳定这些模式。最后,我们执行电磁陀螺仪模拟,并再次观察到在高$β$上的平衡中稳定趋势。这些趋势与较低的$β$对应物不同,并提供了一种替代性的,可能是Tokamak运营的政权。
High-power-density tokamaks offer a potential solution to design cost-effective fusion devices. One way to achieve high power density is to operate at a high $β$ value (the ratio of thermal to magnetic pressure), i.e., $β\sim 1$. However, a $β\sim 1$ state may be unstable to various pressure- and current-driven instabilities or have unfavorable microstability properties. To explore these possibilities, we generate $β\sim 1$ equilibria and investigate their stability. Initially, we study an analytical technique that was used in the past to generate $β\sim 1$ equilibria and outline its limitations. Hence, we demonstrate the generation of high-$β$ equilibria with the computer code $\texttt{VMEC}$. We then analyze these equilibria to determine their stability against the infinite-$n$ ideal ballooning mode. We follow that by engaging in a detailed microstability study, beginning with assessments of electrostatic ITG and TEM instabilities. We observe interesting behavior for the high-$β$ equilibria -- stabilization of these modes through two distinct mechanisms. Finally, we perform electromagnetic gyrokinetic simulations and again observe stabilizing trends in the equilibria at high $β$. These trends are different from their lower $β$ counterparts and offer an alternative, potentially favorable regime of tokamak operation.