论文标题

基于几何不变的数学和化学特性

Mathematical and chemistry properties of geometry-based invariants

论文作者

Liu, Hechao

论文摘要

最近,基于基本的几何形状,古特曼提出了几个基于几何的不变式(即$ so $,$,$ so_ {1} $,$ so_ {2} $,$ so_ {3} $,$ so_ so_ so_ {4} $,$ so_ so_ so_ so_ {5} $,$ so_ so_ so_ {6} $)。 Sombor索引定义为$ SO(g)= \ sum \ limits_ {uv \ in E(g)} \ sqrt {d_ {d_ {u}^{2} {2}+d_ {v}^{v}^{2}}} $,第一个sombor index定义为$ so_ so_ so_ {1}(1}(1}(g)(g)(g)(g)(g)(g)(g)(g)= g)= \ frac {1} {2} \ sum \ limits_ {uv \ in E(g)} | d_ {u}^{2}^{2} -d_ {v}^{2} | $,其中$ d_ {u} $表示顶点$ u $的程度。 在本文中,我们考虑了这些基于几何不变的数学和化学特性。我们确定具有给定直径的最大树(分别单之间图),具有给定匹配数的最大树木,具有给定吊坠顶点的最大树木,最大树(最小树),给定的分支数,具有给定最大程度的最小程度和第二个最大程度的最小树,最大程度的最小值和最小属性的最大属性,并具有最大属性,并具有最大的属性,并具有最大的属性,并列出了一定程度的最大值,并列出了一定程度的最大值,并列出了一定的范围,并具有最大的范围,并列出了一定程度的最大值,并固定了范围,并列出了一定程度的最大值,并构成了范围,并列出了一定程度的最大值,并固定了范围,并列入了最大程度的范围。对于第一个Sombor索引$ so_ {1} $,给定的吊坠顶点。 作为应用程序,我们启动了这些基于几何的不变性,并验证它们的化学适用性。我们使用这些基于几何形状的不变剂来对烷烃的过度因子(分别熵,蒸发等焓等)进行建模,并获得了令人满意的预测潜力,这表明这些基于几何的不变性可以成功地用于建模化合物的热力学特性。

Recently, based on elementary geometry, Gutman proposed several geometry-based invariants (i.e., $SO$, $SO_{1}$, $SO_{2}$, $SO_{3}$, $SO_{4}$, $SO_{5}$, $SO_{6}$). The Sombor index was defined as $SO(G)=\sum\limits_{uv\in E(G)}\sqrt{d_{u}^{2}+d_{v}^{2}}$, the first Sombor index was defined as $SO_{1}(G)= \frac{1}{2}\sum\limits_{uv\in E(G)}|d_{u}^{2}-d_{v}^{2}|$, where $d_{u}$ denotes the degree of vertex $u$. In this paper, we consider the mathematical and chemistry properties of these geometry-based invariants. We determine the maximum trees (resp. unicyclic graphs) with given diameter, the maximum trees with given matching number, the maximum trees with given pendent vertices, the maximum trees (resp. minimum trees) with given branching number, the minimum trees with given maximum degree and second maximum degree, the minimum unicyclic graphs with given maximum degree and girth, the minimum connected graphs with given maximum degree and pendent vertices, and some properties of maximum connected graphs with given pendent vertices with respect to the first Sombor index $SO_{1}$. As an application, we inaugurate these geometry-based invariants and verify their chemical applicability. We used these geometry-based invariants to model the acentric factor (resp. entropy, enthalpy of vaporization, etc.) of alkanes, and obtained satisfactory predictive potential, which indicates that these geometry-based invariants can be successfully used to model the thermodynamic properties of compounds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源