论文标题

评估变异量子算法对泄漏噪声的弹性

Evaluating the Resilience of Variational Quantum Algorithms to Leakage Noise

论文作者

Ding, Chen, Xu, Xiao-Yue, Zhang, Shuo, Bao, Wan-Su, Huang, He-Liang

论文摘要

当我们进入构建实用量子计算机的时代时,抑制不可避免的噪声以完成可靠的计算任务将是主要目标。泄漏噪声是由于量子空间以外的幅度泄漏,这是一个特别有害的错误来源,错误校正方法无法处理。但是,这种噪声对变分量子算法(VQA)的性能的影响是一种自然抗各种噪声的近期量子算法的类型。在这里,{我们考虑了一种典型的情况,其使用广泛使用的硬件有效的ANSATZ以及在双度门中泄漏的出现},观察到泄漏噪声通常会降低VQA的表达能力。此外,我们在现实世界学习任务中基准了泄漏噪声对VQA的影响。结果表明,对于数据拟合和数据分类,泄漏噪声通常会对训练过程和最终结果产生负面影响。我们的发现提供了有力的证据,表明在大多数情况下,VQA容易受到泄漏噪声的影响,这意味着必须有效地抑制泄漏噪声,以实现实用的量子计算应用,无论是否用于近期量子算法和长期错误校正量子计算。

As we are entering the era of constructing practical quantum computers, suppressing the inevitable noise to accomplish reliable computational tasks will be the primary goal. Leakage noise, as the amplitude population leaking outside the qubit subspace, is a particularly damaging source of error that error correction approaches cannot handle. However, the impact of this noise on the performance of variational quantum algorithms (VQAs), a type of near-term quantum algorithms that is naturally resistant to a variety of noises, is yet unknown. Here, {we consider a typical scenario with the widely used hardware-efficient ansatz and the emergence of leakage in two-qubit gates}, observing that leakage noise generally reduces the expressive power of VQAs. Furthermore, we benchmark the influence of leakage noise on VQAs in real-world learning tasks. Results show that, both for data fitting and data classification, leakage noise generally has a negative impact on the training process and final outcomes. Our findings give strong evidence that VQAs are vulnerable to leakage noise in most cases, implying that leakage noise must be effectively suppressed in order to achieve practical quantum computing applications, whether for near-term quantum algorithms and long-term error-correcting quantum computing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源