论文标题

MD-NET:用于本地特征提取的多探测器

MD-Net: Multi-Detector for Local Feature Extraction

论文作者

Santellani, Emanuele, Sormann, Christian, Rossi, Mattia, Kuhn, Andreas, Fraundorfer, Friedrich

论文摘要

在许多计算机视觉管道中,在图像之间建立一组稀疏的关键点相对量是一项基本任务。通常,这转化为一个计算昂贵的最近邻居搜索,其中必须将一个图像的每个键盘描述符与其他图像的所有描述符进行比较。为了降低匹配阶段的计算成本,我们提出了一个能够在每个图像处检测到预定义的互补关键集的深度特征提取网络。由于仅需要在不同图像上比较同一组中的描述符,因此匹配相计算复杂性随集合数量而降低。我们训练我们的网络以预测关键点并共同计算相应的描述符。特别是,为了学习互补的关键集,我们引入了一种新颖的无监督损失,该损失对不同集合之间的交叉点进行了惩罚。此外,我们提出了一种基于描述符的新型加权方案,旨在惩罚使用非歧视性描述符的关键点的检测。通过广泛的实验,我们表明,我们的功能提取网络仅在合成扭曲的图像上进行训练,并且以完全无监督的方式进行了训练,在降低的匹配复杂性下,在3D重建和重新定位任务上取得了竞争成果。

Establishing a sparse set of keypoint correspon dences between images is a fundamental task in many computer vision pipelines. Often, this translates into a computationally expensive nearest neighbor search, where every keypoint descriptor at one image must be compared with all the descriptors at the others. In order to lower the computational cost of the matching phase, we propose a deep feature extraction network capable of detecting a predefined number of complementary sets of keypoints at each image. Since only the descriptors within the same set need to be compared across the different images, the matching phase computational complexity decreases with the number of sets. We train our network to predict the keypoints and compute the corresponding descriptors jointly. In particular, in order to learn complementary sets of keypoints, we introduce a novel unsupervised loss which penalizes intersections among the different sets. Additionally, we propose a novel descriptor-based weighting scheme meant to penalize the detection of keypoints with non-discriminative descriptors. With extensive experiments we show that our feature extraction network, trained only on synthetically warped images and in a fully unsupervised manner, achieves competitive results on 3D reconstruction and re-localization tasks at a reduced matching complexity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源