论文标题

在映射的多捕捉域上用于电磁问题的FEEC框架损坏

A broken FEEC framework for electromagnetic problems on mapped multipatch domains

论文作者

Güçlü, Yaman, Hadjout, Said, Pinto, Martin Campos

论文摘要

我们提出了一个框架,用于在映射的多捕捉域上偏微分方程的结构传播近似,从而将有限元元件外部积分的经典理论扩展到损坏的离散de rham序列,即在整个斑块界面上完全不连续的序列。遵循[http://dx.doi.org/10.1090/mcom/3079,arxiv:2109.02553在[http://dx.doi.org/10.02553中开发的符合/不合格的盖尔金(CONGA)方案之后,我们的方法基于:(i)与稳定的稳定序列相结合的稳定序列的识别(II)(II)的稳定序列(II)的稳定性(II)(II)(II)(II)(II)(II)(II)(II)(II)(II)(II)(II)(II)(II)(IR (iii)构造构造映射回构象子空间的构造,从而定义了损坏序列上的离散差异。 该框架结合了符合FEEC离散化的优势(例如,通勤预测,离散二元性和Hodge-Helmholtz分解)与数据局部性和内部惩罚方法的不连续性Galerkin Siverizatization的内部罚款方法的简单性。我们将其应用于几个初始和边界值问题,以及在电磁学中引起的特征值问题。在每种情况下,我们的制剂都可以很好地摆放,这要符合界面上的跳跃的适当稳定,并且对于稳定参数,解决方案非常健壮。 最后,我们在映射的笛卡尔贴片上使用张量产生的花纹描述了一种结构,并详细介绍了相关的矩阵运算符。我们的数值实验证实了该离散框架的准确性和稳定性,它们使我们能够验证预期的结构具有差异或谐波约束等期望结构的特性对浮点的精度受到尊重。

We present a framework for the structure-preserving approximation of partial differential equations on mapped multipatch domains, extending the classical theory of finite element exterior calculus (FEEC) to discrete de Rham sequences which are broken, i.e., fully discontinuous across the patch interfaces. Following the Conforming/Nonconforming Galerkin (CONGA) schemes developed in [http://dx.doi.org/10.1090/mcom/3079, arXiv:2109.02553, our approach is based on: (i) the identification of a conforming discrete de Rham sequence with stable commuting projection operators, (ii) the relaxation of the continuity constraints between patches, and (iii) the construction of conforming projections mapping back to the conforming subspaces, allowing to define discrete differentials on the broken sequence. This framework combines the advantages of conforming FEEC discretizations (e.g. commuting projections, discrete duality and Hodge-Helmholtz decompositions) with the data locality and implementation simplicity of interior penalty methods for discontinuous Galerkin discretizations. We apply it to several initial- and boundary-value problems, as well as eigenvalue problems arising in electromagnetics. In each case our formulations are shown to be well posed thanks to an appropriate stabilization of the jumps across the interfaces, and the solutions are extremely robust with respect to the stabilization parameter. Finally we describe a construction using tensor-product splines on mapped cartesian patches, and we detail the associated matrix operators. Our numerical experiments confirm the accuracy and stability of this discrete framework, and they allow us to verify that expected structure-preserving properties such as divergence or harmonic constraints are respected to floating-point accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源