论文标题

数据驱动的模块化体系结构,具有用于制造过程中健康指标构建的自动编码器

A data-driven modular architecture with denoising autoencoders for health indicator construction in a manufacturing process

论文作者

Hansen, Emil Blixt, Langseth, Helge, Iftikhar, Nadeem, Bøgh, Simon

论文摘要

在预测和健康管理(PHM)领域内,可以使用健康指标(HI)来帮助生产,例如安排维护并避免失败。但是,HI通常是针对特定过程设计的,通常需要大量的历史数据进行设置。对于中小企业来说,这尤其是一个挑战,这种挑战通常缺乏足够的资源和知识来从PHM中受益。在本文中,我们提出了Modularhi,这是在没有历史数据的系统的HI构建中的模块化方法。使用ModularHi,操作员可以选择哪些传感器输入可用,然后Modularhi将根据在燃烧状态期间收集的数据计算基线模型。然后,该基线模型将用于检测系统是否随着时间的推移开始降解。我们在两个开放数据集,CMAPS和N-CMAPS上测试模块化。以前数据集的结果展示了我们系统检测降解的能力,而后者的结果是该区域内进一步研究的方向。结果表明,我们的新方法能够在没有历史数据的情况下检测系统降解。

Within the field of prognostics and health management (PHM), health indicators (HI) can be used to aid the production and, e.g. schedule maintenance and avoid failures. However, HI is often engineered to a specific process and typically requires large amounts of historical data for set-up. This is especially a challenge for SMEs, which often lack sufficient resources and knowledge to benefit from PHM. In this paper, we propose ModularHI, a modular approach in the construction of HI for a system without historical data. With ModularHI, the operator chooses which sensor inputs are available, and then ModularHI will compute a baseline model based on data collected during a burn-in state. This baseline model will then be used to detect if the system starts to degrade over time. We test the ModularHI on two open datasets, CMAPSS and N-CMAPSS. Results from the former dataset showcase our system's ability to detect degradation, while results from the latter point to directions for further research within the area. The results shows that our novel approach is able to detect system degradation without historical data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源