论文标题
与全球势能表面中的动力学进行对帐光谱:天体物理相关的SIC $ _ {2} $的情况
Reconciling spectroscopy with dynamics in global potential energy surfaces: the case of the astrophysically relevant SiC$_{2}$
论文作者
论文摘要
SIC $ _2 $是一个引人入胜的分子,因为它的异常粘合和天体物理的重要性。在这项工作中,我们报告了使用组合的Hyperbolic Inspersever-Power-Power-Expressentation(CHIPR)方法和准确的初始能量,报告了第一个全球SIC $ _2 $的全球势能表面(PES)。校准网格数据是通过在本文中重新开发的一般双级协议获得的,该协议需要共同推断到完整基集限制的耦合群集和多方面配置相互作用能量。这种方法是专门设计的,以从PES中恢复大部分光谱法,同时仍允许对系统进行适当的碎片化以进行反应动力学研究。除了准确描述包括环状全局最小值和异构化障碍物的价值强大的区域外,最终的分析形式还显示出在所有渐近型通道上正确再现分离能,双原子势和长距离相互作用,除了自然地反映了正确的置换电位的正确置换对称性。已经进行了绑定的振动状态计算,在$ c $ -c $ - $ \ mathrm {sic} _ {2}(^{1} a_1)上揭示了可用实验数据的绝佳匹配。为了进一步利用PES的全球性,对吸热的$ \ Mathrm {c_ {2} \!+\!si} \ rightArrow \ rightArrow \ mathrm {sic \!+\!+\!c} $反应还可以$ k $ k。这种反应在围绕碳富含碳的恒星周围围绕的最内向的层中突出,因此可以想象在其中发挥了对SIC的气相形成的关键贡献,最终是SIC SIC DUST。
SiC$_2$ is a fascinating molecule due to its unusual bonding and astrophysical importance. In this work, we report the first global potential energy surface (PES) for ground-state SiC$_2$ using the combined-hyperbolic-inverse-power-representation (CHIPR) method and accurate ab initio energies. The calibration grid data is obtained via a general dual-level protocol developed afresh herein that entails both coupled-cluster and multireference configuration interaction energies jointly extrapolated to the complete basis set limit. Such an approach is specially devised to recover much of the spectroscopy from the PES, while still permitting a proper fragmentation of the system to allow for reaction dynamics studies. Besides describing accurately the valence strongly-bound region that includes both the cyclic global minimum and isomerization barriers, the final analytic PES form is shown to properly reproduce dissociation energies, diatomic potentials, and long-range interactions at all asymptotic channels, in addition to naturally reflect the correct permutational symmetry of the potential. Bound vibrational state calculations have been carried out, unveiling an excellent match of the available experimental data on $c$-$\mathrm{SiC}_{2}(^{1}A_1)$. To further exploit the global nature of the PES, exploratory quasi-classical trajectory calculations for the endothermic $\mathrm{C_{2}\!+\!Si}\rightarrow\mathrm{SiC\!+\!C}$ reaction are also performed, yielding thermalized rate coefficients for temperatures up to $5000$ K. The results hint for the prominence of this reaction in the innermost layers of the circumstellar envelopes around carbon-rich stars, thence conceivably playing therein a key contribution to the gas-phase formation of SiC, and eventually, solid SiC dust.