论文标题
时期的功能超越和几何安德烈 - 格罗赛期的猜想
Functional Transcendence of Periods and the Geometric André--Grothendieck Period Conjecture
论文作者
论文摘要
我们证明了代数品种家族中代数形式积分积分的功能性超越定理。这使我们能够证明安德烈(André)对Grothendieck时期的概括的几何版本,我们使用Nori动机的形式主义声明了这一点。 更确切地说,我们证明了斧头的一种版本 - 雪铃猜想,用于比较单位混合霍奇结构的任意可允许的可允许分级可层次变化的平坦和代数坐标。这可以看作是\ cite {chiu,gaoklingler}的近期轴的概括。
We prove a functional transcendence theorem for the integrals of algebraic forms in families of algebraic varieties. This allows us to prove a geometric version of André's generalization of the Grothendieck period conjecture, which we state using the formalism of Nori motives. More precisely, we prove a version of the Ax--Schanuel conjecture for the comparison between the flat and algebraic coordinates of an arbitrary admissible graded polarizable variation of integral mixed Hodge structures. This can be seen as a generalization of the recent Ax--Schanuel theorems of \cite{chiu,GaoKlingler} for mixed period maps.