论文标题

Brieskorn球体,循环小组动作和Milnor猜想

Brieskorn spheres, cyclic group actions and the Milnor conjecture

论文作者

Baraglia, David, Hekmati, Pedram

论文摘要

在本文中,我们进一步发展了两位作者的seiberg-witten-ploer共同体的理论,重点是Brieskorn同源性领域。我们获得以下应用程序。首先,我们证明了第一作者定义的结节一致性$θ^{(c)} $满足$θ^{(c)}(t_ {a,b})=(a,b})=(a-1)(a-1)(b-1)(b-1)/2 $对于torus打结,每当$ c $是$ c $的prime nove $ c $不划分$ ab ab $ ab $。由于$θ^{(c)} $是切片属的下限,因此可以使用ozsváth-szabó$τ$ invariant或rasmussen $ s $ invariant使用ozsváth-szabó$τ$ invariant的新证明。其次,我们证明,在Brieskorn同源性上进行的免费循环组动作$ 3 $ -SPHERE $ y =σ(a_1,\ dots,a_r)$不会平稳地扩展到任何可违约的平滑$ 4 $ manifold界限$ y $。这将是任意$ r $的一般性,即$ r = 3 $的Anvari-Hambleton的结果。第三,给定$ y =σ(a_1,\ dots,a_r)prime订单$ p $在$ y $上行动的有限子组,我们证明,如果$ hf_ {red}^+(red}^+(y)的等级大于$ p $ $ p $ y $ p $ y $ p $ $ hf_/p $ hf_ z $//z y/z^z^z^+a z^+red} $ y $上的$ \ mathbb {z} _p $ - $ y $上的Action不会平稳地扩展到任何合同的平滑$ 4 $ -Manifold界限$ y $。对于Brieskorn同源性领域,我们还证明了类似的非扩展结果。

In this paper we further develop the theory of equivariant Seiberg-Witten-Floer cohomology of the two authors, with an emphasis on Brieskorn homology spheres. We obtain the following applications. First, we show that the knot concordance invariants $θ^{(c)}$ defined by the first author satisfy $θ^{(c)}(T_{a,b}) = (a-1)(b-1)/2$ for torus knots, whenever $c$ is a prime not dividing $ab$. Since $θ^{(c)}$ is a lower bound for the slice genus, this gives a new proof of the Milnor conjecture of a similar flavour to the proofs using the Ozsváth-Szabó $τ$-invariant or Rasmussen $s$-invariant. Second, we prove that a free cyclic group action on a Brieskorn homology $3$-sphere $Y = Σ(a_1 , \dots , a_r)$ does not extend smoothly to any contractible smooth $4$-manifold bounding $Y$. This generalises to arbitrary $r$ the result of Anvari-Hambleton in the case $r=3$. Third, given a finite subgroup of the Seifert circle action on $Y = Σ(a_1 , \dots , a_r)$ of prime order $p$ acting non-freely on $Y$, we prove that if the rank of $HF_{red}^+(Y)$ is greater than $p$ times the rank of $HF_{red}^+(Y/\mathbb{Z}_p)$, then the $\mathbb{Z}_p$-action on $Y$ does not extend smoothly to any contractible smooth $4$-manifold bounding $Y$. We also prove a similar non-extension result for equivariant connected sums of Brieskorn homology spheres.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源