论文标题
带有光学晶格的分布式量子传感
Distributed quantum sensing with optical lattices
论文作者
论文摘要
在分布式量子中,通常使用光子系统的多种模式之间的相关性来增强未知参数的测量精度。在这项工作中,我们研究了多模式,倾斜的玻色 - 超字体系统的计量潜力,并表明它可以在海森贝格限制$(n(n(m-1)t)^{2} $的情况下进行参数估计,其中$ n $是$ n $是颗粒的数量,$ m $是模式的数量,$ t $是测量时间。与仅具有两个原子模式的典型计量系统相比,对模式数量的二次依赖性可用于提高精度,并且不需要不同模式之间的相关性。我们表明,可以使用给出的优化初始状态作为所有原子的叠加来达到限制,占据了第一个和最后一个位点。随后,我们提出的策略将允许在更现实的实验设置中获得对费舍尔信息的二次依赖。
In distributed quantum sensing the correlations between multiple modes, typically of a photonic system, are utilized to enhance the measurement precision of an unknown parameter. In this work we investigate the metrological potential of a multi-mode, tilted Bose-Hubbard system and show that it can allow for parameter estimation at the Heisenberg limit of $(N(M-1)T)^{2}$, where $N$ is the number of particles, $M$ is the number of modes, and $T$ is the measurement time. The quadratic dependence on the number of modes can be used to increase the precision compared to typical metrological systems with two atomic modes only, and does not require correlations between different modes. We show that the limit can be reached by using an optimized initial state given as the superposition of all the atoms occupying the first and the last site. Subsequently, we present strategies that would allow to obtain quadratic dependence on $M$ of the Fisher information in a more realistic experimental setup.