论文标题
使用半收缩先验的本地自适应贝叶斯等渗回归
Locally Adaptive Bayesian Isotonic Regression using Half Shrinkage Priors
论文作者
论文摘要
等渗回归或单调函数估计是在单调性约束下估计功能值的问题,这在许多科学领域都自然而然。本文提出了一种新的贝叶斯方法,该方法具有用于估计单调函数值的全局收缩率。具体而言,我们为正值随机变量介绍了半收缩率,并将其分配给函数值的一阶差异。我们还开发了快速,简单的吉布斯采样算法,以进行全后验分析。通过合并高级收缩先验,提出的方法适应局部突然的变化或目标功能的跳跃。从理论上讲,我们通过证明后平均值估计器对巨大差异表明这种适应性属性,并且可以改善对未改变点的渐近风险。最后,我们通过对真实数据集的仿真和应用来演示提出的方法。
Isotonic regression or monotone function estimation is a problem of estimating function values under monotonicity constraints, which appears naturally in many scientific fields. This paper proposes a new Bayesian method with global-local shrinkage priors for estimating monotone function values. Specifically, we introduce half shrinkage priors for positive valued random variables and assign them for the first-order differences of function values. We also develop fast and simple Gibbs sampling algorithms for full posterior analysis. By incorporating advanced shrinkage priors, the proposed method is adaptive to local abrupt changes or jumps in target functions. We show this adaptive property theoretically by proving that the posterior mean estimators are robust to large differences and that asymptotic risk for unchanged points can be improved. Finally, we demonstrate the proposed methods through simulations and applications to a real data set.