论文标题
扭曲的圆形波导阵列中的涡旋孤子
Vortex solitons in twisted circular waveguide arrays
论文作者
论文摘要
我们解决了扭曲的圆形波导阵列中拓扑状态的形成,并发现扭曲会导致新的涡流孤子的基本特性的重要差异,而非线性方向上会产生相反的拓扑电荷。我们发现,这种系统具有顺时针和逆时针涡流状态不务本的稀有属性。专注于具有C_ {6V}离散旋转对称性的数组,我们发现纵向扭曲稳定了最低拓扑电荷M =+-1的涡旋孤子,它们在具有相同对称性的Untwisted Arrays中总是不稳定的。扭曲还导致具有M =+-2的稳定孤子的不稳定性域的出现,并生成带有拓扑电荷M =+-3的涡流模式,这些模式在未近距离的阵列中被禁止。总体而言,我们在阵列的离散旋转对称性,其扭曲方向和可能的孤子拓扑电荷之间建立了严格的关系。
We address the formation of topological states in twisted circular waveguide arrays and find that twisting leads to important differences of the fundamental properties of new vortex solitons with opposite topological charges that arise in the nonlinear regime. We find that such system features the rare property that clockwise and counter-clockwise vortex states are nonequivalent. Focusing on arrays with C_{6v} discrete rotation symmetry, we find that a longitudinal twist stabilizes the vortex solitons with the lowest topological charges m=+-1, which are always unstable in untwisted arrays with the same symmetry. Twisting also leads to the appearance of instability domains for otherwise stable solitons with m=+-2 and generates vortex modes with topological charges m=+-3 that are forbidden in untwisted arrays. By and large, we establish a rigorous relation between the discrete rotation symmetry of the array, its twist direction, and the possible soliton topological charges.