论文标题
振荡障碍物问题中“散装”自由边界的定量收敛性
Quantitative convergence of the "bulk'' free boundary in an oscillatory obstacle problem
论文作者
论文摘要
我们考虑一个振荡性障碍物问题,其中巧合集和自由边界也是高度振荡的。假设后者是规则的,我们为自由边界的正规化概念与相应的经典障碍物问题的自由边界建立了收敛速率。收敛速率在最小长度尺度上是线性的,由校正函数的精细特性确定。
We consider an oscillatory obstacle problem where the coincidence set and free boundary are also highly oscillatory. We establish a rate of convergence for a regularized notion of free boundary to the free boundary of a corresponding classical obstacle problem, assuming the latter is regular. The convergence rate is linear in the minimal length scale determined by the fine properties of a corrector function.