论文标题

参数PDE的正向和反问题的完全概率的深层模型

Fully probabilistic deep models for forward and inverse problems in parametric PDEs

论文作者

Vadeboncoeur, Arnaud, Akyildiz, Ömer Deniz, Kazlauskaite, Ieva, Girolami, Mark, Cirak, Fehmi

论文摘要

我们引入了一个由物理驱动的深层变量模型(PDDLVM),以同时学习参数部分微分方程(PDE)的参数到解决方案(向前)和解决方案对参数(逆)图。我们的公式利用常规的PDE离散化技术,深度神经网络,概率建模和变异推断来组装一个完全概率的相干框架。在所提出的概率模型中,前向和反向图近似为高斯分布,其平均值和协方差由深神经网络参数化。假定PDE残差是值零值的随机向量,因此我们将其模拟为具有零均值和用户规定协方差的随机向量。该模型是通过最大化概率(即证据或边缘可能性)来训练模型的,即通过最大化证据下限(ELBO)来观察零残差。因此,所提出的方法不需要任何独立的PDE解决方案,并且在训练时对物理信息进行了信息,从而可以在训练后实时pde前进和反向问题。提出的框架可以轻松扩展到无缝集成观察到的数据以解决反问题并构建生成模型。我们证明了我们的方法对有限元离散的参数PDE问题的效率和鲁棒性,例如线性和非线性泊松问题,具有复杂3D几何形状的弹性壳以及使用物理形成的神经网络(PINN)裁缝的时间依赖于时间依赖的非线性和无外观PDE。与传统的有限元方法(FEM)相比,训练后最多达到三个数量级的速度,同时输出连贯的不确定性估计值。

We introduce a physics-driven deep latent variable model (PDDLVM) to learn simultaneously parameter-to-solution (forward) and solution-to-parameter (inverse) maps of parametric partial differential equations (PDEs). Our formulation leverages conventional PDE discretization techniques, deep neural networks, probabilistic modelling, and variational inference to assemble a fully probabilistic coherent framework. In the posited probabilistic model, both the forward and inverse maps are approximated as Gaussian distributions with a mean and covariance parameterized by deep neural networks. The PDE residual is assumed to be an observed random vector of value zero, hence we model it as a random vector with a zero mean and a user-prescribed covariance. The model is trained by maximizing the probability, that is the evidence or marginal likelihood, of observing a residual of zero by maximizing the evidence lower bound (ELBO). Consequently, the proposed methodology does not require any independent PDE solves and is physics-informed at training time, allowing the real-time solution of PDE forward and inverse problems after training. The proposed framework can be easily extended to seamlessly integrate observed data to solve inverse problems and to build generative models. We demonstrate the efficiency and robustness of our method on finite element discretized parametric PDE problems such as linear and nonlinear Poisson problems, elastic shells with complex 3D geometries, and time-dependent nonlinear and inhomogeneous PDEs using a physics-informed neural network (PINN) discretization. We achieve up to three orders of magnitude speed-up after training compared to traditional finite element method (FEM), while outputting coherent uncertainty estimates.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源