论文标题

用于预测分子结构 - 特质关系的图形神经网络

Graph neural networks for the prediction of molecular structure-property relationships

论文作者

Rittig, Jan G., Gao, Qinghe, Dahmen, Manuel, Mitsos, Alexander, Schweidtmann, Artur M.

论文摘要

在许多学科(例如药物发现,分子生物学或材料和过程设计)中,分子性质预测至关重要。经常采用的定量结构 - 特性/活性关系(QSPRS/QSARS)通过描述符来表征分子,然后通过线性或非线性模型将其映射到感兴趣的性质。相反,图形神经网络是一种新型的机器学习方法,直接在分子图上起作用,即原子对应于节点和键对应于边缘的图形表示。 GNNS允许以端到端的方式学习属性,从而避免了像QSPRS/QSARS一样需要提供信息的描述符。 GNN已被证明可以在各种属性预测任务上实现最新的预测性能,并代表一个积极的研究领域。我们描述了GNN的基本原理,并通过两个示例来证明GNN的应用用于分子性能预测。

Molecular property prediction is of crucial importance in many disciplines such as drug discovery, molecular biology, or material and process design. The frequently employed quantitative structure-property/activity relationships (QSPRs/QSARs) characterize molecules by descriptors which are then mapped to the properties of interest via a linear or nonlinear model. In contrast, graph neural networks, a novel machine learning method, directly work on the molecular graph, i.e., a graph representation where atoms correspond to nodes and bonds correspond to edges. GNNs allow to learn properties in an end-to-end fashion, thereby avoiding the need for informative descriptors as in QSPRs/QSARs. GNNs have been shown to achieve state-of-the-art prediction performance on various property predictions tasks and represent an active field of research. We describe the fundamentals of GNNs and demonstrate the application of GNNs via two examples for molecular property prediction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源