论文标题

复杂系统的低级假设

The low-rank hypothesis of complex systems

论文作者

Thibeault, Vincent, Allard, Antoine, Desrosiers, Patrick

论文摘要

复杂的系统是高维非线性动力学系统,其成分之间具有复杂的相互作用。为了对其大规模行为做出可解释的预测,通常没有明确的陈述可以假定这些动态可以简化为涉及描述交互网络的低级别矩阵的几个方程式 - 我们称之为低级假设。我们的论文阐明了这一假设并质疑其有效性。通过利用基本定理对奇异值分解,我们通过使其低级别的配方或证明其奇异值的指数下降来揭示各种随机图的假设。值得注意的是,我们通过揭示其奇异值的迅速下降来实验验证实际网络的假设,这对其有效等级产生了重大影响。然后,我们通过最佳的降低来评估低级假设对通用动力学系统对网络的影响。这使我们能够证明可以完全降低复发性神经网络,并将实际网络的迅速降低值连接到其支持的非线性动力学的降低误差,无论是微生物,神经元还是流行病学。最后,我们证明,高阶相互作用自然而然地从缩小维度出现,从而提供了对复杂系统中高阶相互作用的起源的理论见解。

Complex systems are high-dimensional nonlinear dynamical systems with intricate interactions among their constituents. To make interpretable predictions about their large-scale behavior, it is typically assumed, without a clear statement, that these dynamics can be reduced to a few number of equations involving a low-rank matrix describing the network of interactions -- what we call the low-rank hypothesis. Our paper sheds light on this assumption and questions its validity. By leveraging fundamental theorems on singular value decomposition, we expose the hypothesis for various random graphs, either by making explicit their low-rank formulation or by demonstrating the exponential decrease of their singular values. Notably, we verify the hypothesis experimentally for real networks by revealing the rapid decrease of their singular values, which has major consequences on their effective ranks. We then evaluate the impact of the low-rank hypothesis for general dynamical systems on networks through an optimal dimension reduction. This allows us to prove that recurrent neural networks can be exactly reduced, and to connect the rapidly decreasing singular values of real networks to the dimension reduction error of the nonlinear dynamics they support, be it microbial, neuronal or epidemiological. Finally, we prove that higher-order interactions naturally emerge from the dimension reduction, thus providing theoretical insights into the origin of higher-order interactions in complex systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源