论文标题

在不确定性下,用于农场管理实践和品种选择的风险随机优化

Risk-averse Stochastic Optimization for Farm Management Practices and Cultivar Selection Under Uncertainty

论文作者

Akhavizadegan, Faezeh, Ansarifar, Javad, Wang, Lizhi, Archontoulis, Sotirios V.

论文摘要

优化管理实践并选择最佳种植品种在增加农业粮食生产和减少环境足迹方面发挥了重要作用。在这项研究中,我们使用随机编程目标函数中有条件价值的风险来开发在不确定性下的优化框架。我们整合了农作物模型,APSIM和平行的贝叶斯优化算法,以优化管理实践,并在不同级别的风险规避水平上选择最佳品种。这种方法将优化的力量整合在一起,以确定最佳决策和作物模型,以模拟与各种决策相对应的自然输出。作为一个案例研究,我们为整个美国玉米带的25个地点建立了农作物模型。我们优化了管理选择(种植日期,n肥料量,施肥日期和农场中的植物密度)和品种选择(具有不同成熟时间的品种)三次:a)a)b)在种植和c)生长季节后,c)有着已知的天气。结果表明,所提出的模型在天气和最佳决策之间产生了有意义的联系。此外,我们发现,耐风险的农民比在潮湿和非湿气中的风险规避风险的收益率更高。

Optimizing management practices and selecting the best cultivar for planting play a significant role in increasing agricultural food production and decreasing environmental footprint. In this study, we develop optimization frameworks under uncertainty using conditional value-at-risk in the stochastic programming objective function. We integrate the crop model, APSIM, and a parallel Bayesian optimization algorithm to optimize the management practices and select the best cultivar at different levels of risk aversion. This approach integrates the power of optimization in determining the best decisions and crop model in simulating nature's output corresponding to various decisions. As a case study, we set up the crop model for 25 locations across the US Corn Belt. We optimized the management options (planting date, N fertilizer amount, fertilizing date, and plant density in the farm) and cultivar options (cultivars with different maturity days) three times: a) before, b) at planting and c) after a growing season with known weather. Results indicated that the proposed model produced meaningful connections between weather and optima decisions. Also, we found risk-tolerance farmers get more expected yield than risk-averse ones in wet and non-wet weathers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源