论文标题
离散保形几何形状的最大原则,适用于无限三角形的刚性
Maximal principles in discrete conformal geometry with application to the rigidity of infinite triangulations
论文作者
论文摘要
在本文中,建立了多面体表面上欧几里得和双曲线离散结构的最大原理。这些最大原则在文献中统一并概括了顶点量表和不同类型的圆形包装的最大原则。作为双曲线离散原理的应用,建立了离散的Schwarz-Ahlfors引理。作为另一种应用,证明了双曲机平面小的delaunay三角剖分的无限刚性定理。
In this paper, maximum principles for Euclidean and hyperbolic discrete conformal structures on polyhedral surfaces are established. These maximum principles unify and generalize the maximum principles for vertex scalings and different types of circle packings in the literature. As an application of the hyperbolic discrete maximum principle, a discrete Schwarz-Ahlfors lemma is established. As another application, an infinite rigidity theorem for small Delaunay triangulations of the hyperbolic plane is proved.