论文标题

光学模式通过时空调节原子易感性转换

Optical mode conversion via spatiotemporally modulated atomic susceptibility

论文作者

Baum, Claire, Jaffe, Matt, Palm, Lukas, Kumar, Aishwarya, Simon, Jonathan

论文摘要

由于其速度,可操作性和丰富的自由度来编码信息,光是经典信息传输的绝佳媒介。最近,太空划分的多路复用已引起人们的注意,作为通过利用无限二维传播特征模式(例如Laguerre-Gaussian“ Donut”模式)来大大提高信息传输速率的一种手段。在这些高维空间中进行编码需要能够以高效率来操纵光子自由度的设备。在这项工作中,我们证明了控制原子样品的光敏性,可以用作操纵通过样品的光自由度的强大工具。利用此工具,我们演示了具有高效率的扭曲光腔的两个拉瓜仪模式之间的光子模式转换。我们使用辅助型变形光束在空腔腰部进行空间调节原子样品的光敏性,实际上创建了一种模式耦合光学,该光学偶耦合光学,以转换轨道角动量模式$ L = 3 \ 3 \ rightarrow l = 0 $。内部转换效率与原子数和调制光束强度的函数接近统一饱和,在拓扑几岁的状态制备中找到应用,量子通信以及作为灵活的桌面设备的潜在发展。

Light is an excellent medium for both classical and quantum information transmission due to its speed, manipulability, and abundant degrees of freedom into which to encode information. Recently, space-division multiplexing has gained attention as a means to substantially increase the rate of information transfer by utilizing sets of infinite-dimensional propagation eigenmodes such as the Laguerre-Gaussian 'donut' modes. Encoding in these high-dimensional spaces necessitates devices capable of manipulating photonic degrees of freedom with high efficiency. In this work, we demonstrate controlling the optical susceptibility of an atomic sample can be used as powerful tool for manipulating the degrees of freedom of light that passes through the sample. Utilizing this tool, we demonstrate photonic mode conversion between two Laguerre-Gaussian modes of a twisted optical cavity with high efficiency. We spatiotemporally modulate the optical susceptibility of an atomic sample that sits at the cavity waist using an auxiliary Stark-shifting beam, in effect creating a mode-coupling optic that converts modes of orbital angular momentum $l=3\rightarrow l=0$. The internal conversion efficiency saturates near unity as a function of the atom number and modulation beam intensity, finding application in topological few-body state preparation, quantum communication, and potential development as a flexible tabletop device.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源