论文标题

条件不足的低惯性动力系统中的参数估计

Parameter Estimation in Ill-conditioned Low-inertia Power Systems

论文作者

Anguluri, Rajasekhar, Sankar, Lalitha, Kosut, Oliver

论文摘要

本文研究了模型参数估计在动态功率系统中,其管理电力方程是不良条件或单数的。这种不良的条件是由于转换器间隙的动力系统发生器的零或小惯性贡献。因此,整体系统惯性减少,导致低惯性功率系统。我们表明,基于最小二乘或子空间估计器的标准状态空间模型对于这些模型不存在。我们通过直接在耦合的挥杆方程模型上考虑最小二乘估计器来克服这一挑战,而不是在其转换的一阶状态空间形式上。尽管我们的方法足以估算其他参数,但我们特别着重于估计惯性(机械和虚拟)和阻尼常数。我们的理论分析强调了网络拓扑在单个发电机的参数估计中的作用。对于具有更大连接性的发电机,对关联参数的估计更容易受到其他发电机状态的变化。此外,我们从数值上表明,通过忽略其不良条件方面来估计参数会产生高度不可靠的结果。

This paper examines model parameter estimation in dynamic power systems whose governing electro-mechanical equations are ill-conditioned or singular. This ill-conditioning is because of converter-interfaced power systems generators' zero or small inertia contribution. Consequently, the overall system inertia decreases, resulting in low-inertia power systems. We show that the standard state-space model based on least squares or subspace estimators fails to exist for these models. We overcome this challenge by considering a least-squares estimator directly on the coupled swing-equation model but not on its transformed first-order state-space form. We specifically focus on estimating inertia (mechanical and virtual) and damping constants, although our method is general enough for estimating other parameters. Our theoretical analysis highlights the role of network topology on the parameter estimates of an individual generator. For generators with greater connectivity, estimation of the associated parameters is more susceptible to variations in other generator states. Furthermore, we numerically show that estimating the parameters by ignoring their ill-conditioning aspects yields highly unreliable results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源