论文标题
通过变异混合量子退火优化的RNA折叠问题的QUBO模型
A QUBO model of the RNA folding problem optimized by variational hybrid quantum annealing
论文作者
论文摘要
RNA通过核苷酸之间的氢键基生成自我相互作用,并折叠成特定的稳定结构,这些结构实质上控制了它们的生化行为。这些结构的实验表征仍然很困难,因此渴望从序列信息中预测它们。但是,可以正确预测使用最小自由能模型的序列中RNA的折叠结构所涉及的碱基对,也被认为是NP-HARD。经典方法取决于启发式方法或避免考虑伪诺斯,以使这个问题更具处理性,其成本不精确或排除了整个重要的RNA结构。鉴于它们在某些领域(包括组合优化)中的前瞻性和可证明的优势,相反,量子计算方法具有计算完整的RNA折叠问题的潜力,同时保持更可行和精确。在本文中,我们提出了一个可以在量子退火器和电路模型量子计算机上进行的RNA折叠问题的物理动机QUBO模型,并在调谐所有已知RNA结构的参数之后,使用一种方法使用一种方法来比较该配方的性能与当前的RNA折叠Qubos,我们使用一种方法使用了“不同的方法”。
RNAs self-interact through hydrogen-bond base-pairing between nucleotides and fold into specific, stable structures that substantially govern their biochemical behaviour. Experimental characterization of these structures remains difficult, hence the desire to predict them computationally from sequence information. However, correctly predicting even the base pairs involved in the folded structure of an RNA, known as secondary structure, from its sequence using minimum free energy models is understood to be NP-hard. Classical approaches rely on heuristics or avoid considering pseudoknots in order to render this problem more tractable, with the cost of inexactness or excluding an entire class of important RNA structures. Given their prospective and demonstrable advantages in certain domains, including combinatorial optimization, quantum computing approaches by contrast have the potential to compute the full RNA folding problem while remaining more feasible and exact. Herein, we present a physically-motivated QUBO model of the RNA folding problem amenable to both quantum annealers and circuit-model quantum computers and compare the performance of this formulation versus current RNA folding QUBOs after tuning the parameters of all against known RNA structures using an approach we call "variational hybrid quantum annealing".