论文标题

LARGENETVIS:基于社区分类法的大型时间网络的视觉探索

LargeNetVis: Visual Exploration of Large Temporal Networks Based on Community Taxonomies

论文作者

Linhares, Claudio D. G., Ponciano, Jean R., Pedro, Diogenes S., Rocha, Luis E. C., Traina, Agma J. M., Poco, Jorge

论文摘要

时间(或时间发展)网络通常用于建模复杂系统及其组件的演变。尽管可以通过不同的方式对这些网络进行分析,但视觉分析是在进行定量/统计分析之前识别数据中模式,异常和其他行为的有效方法,从而导致新的见解和更好的决策。但是,许多实际网络中的大量节点,边缘和/或时间戳可能会导致污染的布局,从而使分析效率低下甚至不可行。在本文中,我们提出了LargenetVis,这是一种基于Web的视觉分析系统,旨在帮助分析小型和大型时间网络。它通过利用三个分类法来成功实现这一目标,以指导视觉探索过程。该系统由四个互动视觉组成组成:第一个(分类矩阵)列出了网络特征的摘要,第二个(全局视图)概述了网络演变,第三个(节点链接图)可以使社区和节点级别和节点级的结构分析,以及第四个(临时活动图 - TAM - TAM - TAM)显示了社区的活动,并显示了一个临时活动。

Temporal (or time-evolving) networks are commonly used to model complex systems and the evolution of their components throughout time. Although these networks can be analyzed by different means, visual analytics stands out as an effective way for a pre-analysis before doing quantitative/statistical analyses to identify patterns, anomalies, and other behaviors in the data, thus leading to new insights and better decision-making. However, the large number of nodes, edges, and/or timestamps in many real-world networks may lead to polluted layouts that make the analysis inefficient or even infeasible. In this paper, we propose LargeNetVis, a web-based visual analytics system designed to assist in analyzing small and large temporal networks. It successfully achieves this goal by leveraging three taxonomies focused on network communities to guide the visual exploration process. The system is composed of four interactive visual components: the first (Taxonomy Matrix) presents a summary of the network characteristics, the second (Global View) gives an overview of the network evolution, the third (a node-link diagram) enables community- and node-level structural analysis, and the fourth (a Temporal Activity Map -- TAM) shows the community- and node-level activity under a temporal perspective.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源