论文标题
中微子冷却中微子冷却中微子在中微子恒星MXB 1659-29
Fast neutrino cooling in the accreting neutron star MXB 1659-29
论文作者
论文摘要
在低质量X射线二进制MXB 1659-29的多个积聚爆发中的地壳加热和冷却的建模表明,中子星核的中微子发光度与核心体积的$ \ sim 1 \%$中发生的直接URCA反应一致。我们使用中子星模型调查了这种情况,其中包括一个由核对称能量$ l $的斜率以及一系列中子和质子超流体间隙进行参数的详细状态方程。我们发现预测的中子星质量敏感地取决于$ l $和假定的差距。我们讨论哪些超氟差距的组合再现了推断的中微子光度。 $ l \ gtrsim 80 \ {\ rm mev} $的较大值需要超流体才能抑制低质量中子星中的杜尔卡反应,即质子或中子间隙足够强,并且延伸至足够高密度。但是,最大的间隙使质量接近最大质量,因此很难容纳较冷的中子星。我们将Durca归一化降低的模型视为外来核心中替代,效率较低,快速冷却过程的近似值。我们找到具有较大发射量的解决方案,为观察到的中微子发光度提供了更自然的解释,前提是快速冷却过程在杜尔卡(Durca)的$ \ sim 1000 $之内。我们模型的热能范围从完全分配到完全未拨入的核子范围,这意味着核心冷却的长期观察可以区分模型。我们讨论了未来约束对中子星质量,半径和对称能量的密度依赖性的影响。
Modelling of crust heating and cooling across multiple accretion outbursts of the low mass X-ray binary MXB 1659-29 indicates that the neutrino luminosity of the neutron star core is consistent with direct Urca reactions occurring in $\sim 1\%$ of the core volume. We investigate this scenario with neutron star models that include a detailed equation of state parametrized by the slope of the nuclear symmetry energy $L$, and a range of neutron and proton superfluid gaps. We find that the predicted neutron star mass depends sensitively on $L$ and the assumed gaps. We discuss which combinations of superfluid gaps reproduce the inferred neutrino luminosity. Larger values of $L\gtrsim 80\ {\rm MeV}$ require superfluidity to suppress dUrca reactions in low mass neutron stars, i.e. that the proton or neutron gap is sufficiently strong and extends to high enough density. However, the largest gaps give masses near the maximum mass, making it difficult to accommodate colder neutron stars. We consider models with reduced dUrca normalization as an approximation of alternative, less efficient, fast cooling processes in exotic cores. We find solutions with a larger emitting volume, providing a more natural explanation for the observed neutrino luminosity, provided the fast cooling process is within a factor of $\sim 1000$ of dUrca. The heat capacities of our models span the range from fully-paired to fully-unpaired nucleons meaning that long term observations of core cooling could distinguish between models. We discuss the impact of future constraints on neutron star mass, radius and the density dependence of the symmetry energy.