论文标题

在Metaverse中同步现实世界设备和数字模型的采样,通信和预测共同设计

Sampling, Communication, and Prediction Co-Design for Synchronizing the Real-World Device and Digital Model in Metaverse

论文作者

Meng, Zhen, She, Changyang, Zhao, Guodong, De Martini, Daniele

论文摘要

Metavers有潜力通过在混合现实(MR)技术的帮助下支持高度交互式服务来彻底改变下一代互联网。不过,为了为用户提供令人满意的体验,物理世界与其数字模型之间的同步至关重要。这项工作提出了一个采样,通信和预测共同设计框架,以最大程度地减少通信负载,从而受到限制,以在元视频中跟踪真实世界设备及其数字模型之间的平均平方误差(MSE)。为了优化采样率和预测范围,我们利用专家知识并开发了约束的深度强化学习(DRL)算法,称为知识辅助受约束的双胞胎删除的深层确定性(KC-TD3)策略梯度梯度算法。我们在由现实世界的机器人臂及其数字模型组成的原型上验证了框架。与现有方法相比:(1)当跟踪错误约束严格(MSE = 0.002度)时,我们的策略将在采样 - 通信共同设计框架中退化为策略。 (2)当跟踪误差约束(MSE = 0.007度)时,我们的策略将在预测沟通共同设计框架中退化为策略。 (3)与没有采样和预测的通信系统相比,我们的框架在平均MSE和平均通信负载之间取得了更好的权衡。例如,当轨道误差限制为0.002度时,平均通信负载最多可降低87%。 (4)我们的策略优于基准,从详尽的搜索中,就跟踪误差的尾巴概率而言,通过详尽的搜索优化了基准。此外,在专家知识的帮助下,拟议的算法KC-TD3实现了更好的收敛时间,稳定性和最终政策绩效。

The metaverse has the potential to revolutionize the next generation of the Internet by supporting highly interactive services with the help of Mixed Reality (MR) technologies; still, to provide a satisfactory experience for users, the synchronization between the physical world and its digital models is crucial. This work proposes a sampling, communication and prediction co-design framework to minimize the communication load subject to a constraint on tracking the Mean Squared Error (MSE) between a real-world device and its digital model in the metaverse. To optimize the sampling rate and the prediction horizon, we exploit expert knowledge and develop a constrained Deep Reinforcement Learning (DRL) algorithm, named Knowledge-assisted Constrained Twin-Delayed Deep Deterministic (KC-TD3) policy gradient algorithm. We validate our framework on a prototype composed of a real-world robotic arm and its digital model. Compared with existing approaches: (1) When the tracking error constraint is stringent (MSE=0.002 degrees), our policy degenerates into the policy in the sampling-communication co-design framework. (2) When the tracking error constraint is mild (MSE=0.007 degrees), our policy degenerates into the policy in the prediction-communication co-design framework. (3) Our framework achieves a better trade-off between the average MSE and the average communication load compared with a communication system without sampling and prediction. For example, the average communication load can be reduced up to 87% when the track error constraint is 0.002 degrees. (4) Our policy outperforms the benchmark with the static sampling rate and prediction horizon optimized by exhaustive search, in terms of the tail probability of the tracking error. Furthermore, with the assistance of expert knowledge, the proposed algorithm KC-TD3 achieves better convergence time, stability, and final policy performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源