论文标题
发育层的能力在人工胚胎发生模型中改变了进化动力学
Competency of the Developmental Layer Alters Evolutionary Dynamics in an Artificial Embryogeny Model of Morphogenesis
论文作者
论文摘要
生物基因型不会直接为表型编码;发育生理学是将基因组与通过选择确定的能力分开的控制层。一个关键方面是能力,因为细胞不是被动物质,而是具有复杂上下文敏感性的单细胞生物的后代。我们在最小人造胚胎的背景下使用了进化模拟来探测不同程度的细胞能力对进化动力学的影响。虚拟胚胎由细胞基因组提供的位置信息值的单个轴组成,该胚胎是由胚胎梯度的单调性成正比的进化循环操作的。进化动力学以两种模式进行了评估:硬有线“马赛克”开发(基因型直接编码表型),以及一种更现实的模式,其中细胞在适应性函数进行评估之前相互作用(“调节”开发)。即使在提高其在胚胎中的位置方面的能力最低,也可以提高进化搜索的表现。至关重要的是,我们观察到,当细胞的能力掩盖基因组的原始适应性时,表型适应性增长主要是由于细胞发育解决问题能力的改善,而不是结构基因组。这表明存在强大的棘轮机制:进化逐渐被锁定在其智力基质的智能上的改善,并减少了对结构基因组的压力。反馈循环越来越多地为发展软件付出了更多的精力,而不是完善硬件,这解释了基因组与Planaria这样的物种中解剖结构的令人困惑的差异,它可以确定随着时间的推移扩展智能的可能动力,并提出了在Silico和Bioengineering中进行工程新型系统的策略。
Biological genotypes do not code directly for phenotypes; developmental physiology is the control layer that separates genomes from capacities ascertained by selection. A key aspect is competency, as cells are not a passive material but descendants of unicellular organisms with complex context-sensitive capabilities. We used an evolutionary simulation in the context of minimal artificial embryogeny to probe the effects of different degrees of cellular competency on evolutionary dynamics. Virtual embryos consisted of a single axis of positional information values provided by cells' genomes, operated upon by an evolutionary cycle in which embryos' fitness was proportional to monotonicity of the axial gradient. Evolutionary dynamics were evaluated in two modes: hardwired "mosaic" development (genotype directly encodes phenotype), and a more realistic mode in which cells interact prior to evaluation by the fitness function ("regulative" development). Even minimal competency with respect to improving their position in the embryo results in better performance of the evolutionary search. Crucially, we observed that as competency of cells masks the raw fitness of the genomes, the phenotypic fitness gains are then mostly due to improvements of cells' developmental problem-solving capacities, not the structural genome. This suggests the existence of a powerful ratchet mechanism: evolution progressively becomes locked in to improvements in the intelligence of its agential substrate, with reduced pressure on the structural genome. A feedback loop in which evolution increasingly puts more effort into the developmental software than perfecting the hardware explains the very puzzling divergence of genome from anatomy in species like planaria, identifies a possible drive for scaling intelligence over time, and suggests strategies for engineering novel systems in silico and in bioengineering.