论文标题
复制研究的权力先验
Power priors for replication studies
论文作者
论文摘要
科学中持续的复制危机对复制研究方法的兴趣增加了。我们提出了一种新型的贝叶斯分析方法,使用权力先验:原始研究数据的可能性提高到$α$的功率,然后用作复制数据分析的先前分布。后分布和贝叶斯因子因子假设检验与功率参数$α$相关的测试量化了原始研究和复制研究之间的兼容程度。其他参数的推论,例如效应大小,从原始研究中动态借用信息。借贷程度取决于两项研究之间的冲突。该方法的实用值在三个复制研究的数据以及与层次建模方法的联系中说明了。我们概括了固定参数的正常功率先验和正常层次模型之间的已知连接,并证明使用beta先验的正常功率在功率参数$α$与正常层次模型推断的功率参数$α$对齐,并使用相对异质性方差$ i^2 $使用普遍的beta推断。该连接说明了功率先验建模从层次建模的角度是不自然的,因为它对应于在相对而不是绝对异质性量表上指定先验。
The ongoing replication crisis in science has increased interest in the methodology of replication studies. We propose a novel Bayesian analysis approach using power priors: The likelihood of the original study's data is raised to the power of $α$, and then used as the prior distribution in the analysis of the replication data. Posterior distribution and Bayes factor hypothesis tests related to the power parameter $α$ quantify the degree of compatibility between the original and replication study. Inferences for other parameters, such as effect sizes, dynamically borrow information from the original study. The degree of borrowing depends on the conflict between the two studies. The practical value of the approach is illustrated on data from three replication studies, and the connection to hierarchical modeling approaches explored. We generalize the known connection between normal power priors and normal hierarchical models for fixed parameters and show that normal power prior inferences with a beta prior on the power parameter $α$ align with normal hierarchical model inferences using a generalized beta prior on the relative heterogeneity variance $I^2$. The connection illustrates that power prior modeling is unnatural from the perspective of hierarchical modeling since it corresponds to specifying priors on a relative rather than an absolute heterogeneity scale.