论文标题

马提尼晶格上的高阶拓扑绝缘子及其平方根的后代

Higher-Order Topological Insulator on a Martini Lattice and Its Square Root Descendant

论文作者

Matsumoto, Daiki, Mizoguchi, Tomonari, Hatsugai, Yasuhiro

论文摘要

正方形拓扑拓扑因子的概念最近已被推广到高阶拓扑绝缘子。在二维平方根的高阶拓扑基绝缘子中,间隙拐角状态的出现源自具有高阶拓扑的平方汉密尔顿。在本文中,我们建议马提尼晶格模型是高阶拓扑绝缘子的具体示例。此外,我们还提出了基于马提尼模型的Suquare-root高阶拓扑绝缘子。具体而言,我们建议带有两个站点装饰的蜂窝状晶格模型,其平方的哈密顿量由两个马提尼晶格模型组成,它实现了方形 - 根 - 高阶的高阶拓扑绝缘子。我们显示,对于这两种模型,我们都表明,间隙角状态出现在有限的能量上,并且它们由非平凡的散装$ \ Mathbb {z} _3 $拓扑不变式进行。

Notion of square-root topological insulators have been recently generalized to higher-order topological insulators. In two-dimensional square-root higher-order topological insulators, emergence of in-gap corner states are inherited from the squared Hamiltonian which hosts higher-order topology. In this paper, we propose that the martini lattice model serves as a concrete example of higher-order topological insulators. Furthermore, we also propose a suquare-root higher-order topological insulator based on the martini model. Specifically, we propose that the honeycomb lattice model with two-site decoration, whose squared Hamiltonian consists of two martini lattice models, realizes square-root higher-order topological insulators. We show, for both of these two models, that in-gap corner states appear at finite energies and that they are portected by non-trivial bulk $\mathbb{Z}_3$ topological invariant.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源