论文标题

平面曲线奇异性的注释

A note on the plane curve singularities in positive characteristic

论文作者

Barroso, Evelia R. García, Płoski, Arkadiusz

论文摘要

给定代数曲线$ f = 0 $在代数封闭的特征$ p \ geq 0 $上,我们考虑milnor数字$μ(f)$,delta不变性$δ(f)$和数量$ r(f)$ r(f)$ r(f)$ r(f)$ r(f)$ r(f)$ r(f)$ r(f)。放置$ \barμ(f)=2δ(f)-r(f)+1 $。如果$ p = 0 $,则$ \barμ(f)=μ(f)$(milnor公式)。如果$ p> 0 $,则$μ(f)$不是不变的,$ \barμ(f)$扮演$μ(f)$。令$ \ Mathcal n_f $为$ f $的牛顿多边形。我们定义数字$μ(\ Mathcal n_ {f})$和$ r(\ Mathcal n_ {f})$,可以通过显式公式计算。本说明的目的是简单地证明不等式$ \barμ(f)-μ(\ Mathcal n_ {f})\ geq r(\ Mathcal n_ {f}) - r(f)\ geq 0 $归因于Boubakri,Greuel,Greuel,Greuel和Markwig。我们还证明$ \barμ(f)=μ(\ Mathcal n_ {f})$当$ f $是非分级时。

Given an algebroid plane curve $f=0$ over an algebraically closed field of characteristic $p\geq 0$ we consider the Milnor number $μ(f)$, the delta invariant $δ(f)$ and the number $r(f)$ of its irreducible components. Put $\bar μ(f)=2δ(f)-r(f)+1$. If $p=0$ then $\bar μ(f)=μ(f)$ (the Milnor formula). If $p>0$ then $μ(f)$ is not an invariant and $\bar μ(f)$ plays the role of $μ(f)$. Let $\mathcal N_f$ be the Newton polygon of $f$. We define the numbers $μ(\mathcal N_{f})$ and $r(\mathcal N_{f})$ which can be computed by explicit formulas. The aim of this note is to give a simple proof of the inequality $\bar μ(f)-μ(\mathcal N_{f})\geq r(\mathcal N_{f})- r(f)\geq 0$ due to Boubakri, Greuel and Markwig. We also prove that $\bar μ(f)=μ(\mathcal N_{f})$ when $f$ is non-degenerate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源