论文标题

稳定视频的GPU加速筛分源识别

GPU-accelerated SIFT-aided source identification of stabilized videos

论文作者

Montibeller, Andrea, Pasquini, Cecilia, Boato, Giulia, Dell'Anna, Stefano, Pérez-González, Fernando

论文摘要

视频稳定是现代采集设备通常应用的相机内处理。尽管显着提高了所得视频的视觉质量,但已显示此类操作通常会阻碍视频信号的法医分析。实际上,通常基于照片响应不均匀性(PRNU)的采集来源的正确识别受稳定阶段中应用于每个帧的转换的估计。已经提出了许多用于处理此问题的技术,但是由于反转参数空间的网格搜索,通常会遭受高计算负担。我们的工作试图通过利用图形处理单元(GPU)(通常用于深度学习应用程序)的平行化功能来减轻这些缺点,这是在稳定框架倒置的框架内。此外,我们建议利用SIFT功能{估计相机动量和}%,以识别较少稳定的时间段,从而实现更准确的识别分析,并有效地初始化连续帧的框架参数搜索。在合并基准数据集上进行的实验证实了所提出的方法在减少所需的计算时间和提高源识别精度方面的有效性。 {代码可在\ url {https://github.com/amontib/gpu-prnu-sift}}中获得。

Video stabilization is an in-camera processing commonly applied by modern acquisition devices. While significantly improving the visual quality of the resulting videos, it has been shown that such operation typically hinders the forensic analysis of video signals. In fact, the correct identification of the acquisition source usually based on Photo Response non-Uniformity (PRNU) is subject to the estimation of the transformation applied to each frame in the stabilization phase. A number of techniques have been proposed for dealing with this problem, which however typically suffer from a high computational burden due to the grid search in the space of inversion parameters. Our work attempts to alleviate these shortcomings by exploiting the parallelization capabilities of Graphics Processing Units (GPUs), typically used for deep learning applications, in the framework of stabilised frames inversion. Moreover, we propose to exploit SIFT features {to estimate the camera momentum and} %to identify less stabilized temporal segments, thus enabling a more accurate identification analysis, and to efficiently initialize the frame-wise parameter search of consecutive frames. Experiments on a consolidated benchmark dataset confirm the effectiveness of the proposed approach in reducing the required computational time and improving the source identification accuracy. {The code is available at \url{https://github.com/AMontiB/GPU-PRNU-SIFT}}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源