论文标题
策划者的神经引导的运行时间预定,以改进运动和图形神经网络的任务计划
Neural-Guided RuntimePrediction of Planners for Improved Motion and Task Planning with Graph Neural Networks
论文作者
论文摘要
过去的十年充分证明了通过学习复杂的输入/输出关系可以实现的显着功能。从算法上讲,最重要,最不透明的关系之一是问题的结构与有效的解决方案方法之间。在这里,我们将计划问题的结构与给定采样计划(SBMP)算法的性能联系起来。我们证明,运动计划问题的几何关系可以通过图神经网络(GNN)很好地捕获,以预测SBMP运行时。通过使用算法投资组合,我们表明可以利用GNN对特定问题的运行时预测,以在导航和操纵任务中加速在线运动计划。此外,可以将问题之间的映射倒置,以识别易于通过特定SBMP求解的子问题。我们提供了一个激励人心的例子,说明如何使用这些知识来改善模拟示例的集成任务和运动计划。这些成功依赖于GNN的关系结构来捕获从低维导航任务到3D环境中高度自由度操纵任务的可扩展概括。
The past decade has amply demonstrated the remarkable functionality that can be realized by learning complex input/output relationships. Algorithmically, one of the most important and opaque relationships is that between a problem's structure and an effective solution method. Here, we quantitatively connect the structure of a planning problem to the performance of a given sampling-based motion planning (SBMP) algorithm. We demonstrate that the geometric relationships of motion planning problems can be well captured by graph neural networks (GNNs) to predict SBMP runtime. By using an algorithm portfolio we show that GNN predictions of runtime on particular problems can be leveraged to accelerate online motion planning in both navigation and manipulation tasks. Moreover, the problem-to-runtime map can be inverted to identify subproblems easier to solve by particular SBMPs. We provide a motivating example of how this knowledge may be used to improve integrated task and motion planning on simulated examples. These successes rely on the relational structure of GNNs to capture scalable generalization from low-dimensional navigation tasks to high degree-of-freedom manipulation tasks in 3d environments.